Abstract:Planning agents are ill-equipped to act in novel situations in which their domain model no longer accurately represents the world. We introduce an approach for such agents operating in open worlds that detects the presence of novelties and effectively adapts their domain models and consequent action selection. It uses observations of action execution and measures their divergence from what is expected, according to the environment model, to infer existence of a novelty. Then, it revises the model through a heuristics-guided search over model changes. We report empirical evaluations on the CartPole problem, a standard Reinforcement Learning (RL) benchmark. The results show that our approach can deal with a class of novelties very quickly and in an interpretable fashion.
Abstract:Different advertising messages work for different people. Machine learning can be an effective way to personalise climate communications. In this paper we use machine learning to reanalyse findings from a recent study, showing that online advertisements increased some people's belief in climate change while resulting in decreased belief in others. In particular, we show that the effect of the advertisements could change depending on people's age and ethnicity.
Abstract:This demo paper presents the first system for playing the popular Angry Birds game using a domain-independent planner. Our system models Angry Birds levels using PDDL+, a planning language for mixed discrete/continuous domains. It uses a domain-independent PDDL+ planner to generate plans and executes them. In this demo paper, we present the system's PDDL+ model for this domain, identify key design decisions that reduce the problem complexity, and compare the performance of our system to model-specific methods for this domain. The results show that our system's performance is on par with other domain-specific systems for Angry Birds, suggesting the applicability of domain-independent planning to this benchmark AI challenge.
Abstract:Interactive Task Learning (ITL) is an emerging research agenda that studies the design of complex intelligent robots that can acquire new knowledge through natural human teacher-robot learner interactions. ITL methods are particularly useful for designing intelligent robots whose behavior can be adapted by humans collaborating with them. Various research communities are contributing methods for ITL and a large subset of this research is robot-centered with a focus on developing algorithms that can learn online, quickly. This paper studies the ITL problem from a human-centered perspective to provide guidance for robot design so that human teachers can interact with ITL robots naturally. In this paper, we present 1) a cognitive task analysis of an interactive teaching study (N=10) that extracts and classify various actions intended and executed by human teachers when teaching a robot; 2) in-depth discussion of the teaching approach employed by two participants to understand the need for personal adaptation to individual styles; and 3) requirements for ITL robot design based on our analyses informed by plan-based theories of dialogue, specifically SharedPlans.
Abstract:Despite a tremendous amount of work in the literature and in the commercial sectors, current approaches to multi-modal trip planning still fail to consistently generate plans that users deem optimal in practice. We believe that this is due to the fact that current planners fail to capture the true preferences of users, e.g., their preferences depend on aspects that are not modeled. An example of this could be a preference not to walk through an unsafe area at night. We present a novel multi-modal trip planner that allows users to upload auxiliary geographic data (e.g., crime rates) and to specify temporal constraints and preferences over these data in combination with typical metrics such as time and cost. Concretely, our planner supports the modes walking, biking, driving, public transit, and taxi, uses linear temporal logic to capture temporal constraints, and preferential cost functions to represent preferences. We show by examples that this allows the expression of very interesting preferences and constraints that, naturally, lead to quite diverse optimal plans.
Abstract:Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce COPTER - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a person given their context and preferences. We propose a formulation for acceptable planning that brings together ideas from AI, machine learning, and economics. This formulation has been incorporated in COPTER that produces acceptable plans in real-time. We adopt a novel empirical evaluation framework that combines human decision data with a high fidelity multi-modal transportation simulation to demonstrate a 4\% energy reduction and 20\% delay reduction in a realistic deployment scenario in Los Angeles, California, USA.