Abstract:Even though machine learning (ML) pipelines affect an increasing array of stakeholders, there is little work on how input from stakeholders is recorded and incorporated. We propose FeedbackLogs, addenda to existing documentation of ML pipelines, to track the input of multiple stakeholders. Each log records important details about the feedback collection process, the feedback itself, and how the feedback is used to update the ML pipeline. In this paper, we introduce and formalise a process for collecting a FeedbackLog. We also provide concrete use cases where FeedbackLogs can be employed as evidence for algorithmic auditing and as a tool to record updates based on stakeholder feedback.
Abstract:Concept-based models perform prediction using a set of concepts that are interpretable to stakeholders. However, such models often involve a fixed, large number of concepts, which may place a substantial cognitive load on stakeholders. We propose Selective COncept Models (SCOMs) which make predictions using only a subset of concepts and can be customised by stakeholders at test-time according to their preferences. We show that SCOMs only require a fraction of the total concepts to achieve optimal accuracy on multiple real-world datasets. Further, we collect and release a new dataset, CUB-Sel, consisting of human concept set selections for 900 bird images from the popular CUB dataset. Using CUB-Sel, we show that humans have unique individual preferences for the choice of concepts they prefer to reason about, and struggle to identify the most theoretically informative concepts. The customisation and concept selection provided by SCOM improves the efficiency of interpretation and intervention for stakeholders.
Abstract:Placing a human in the loop may abate the risks of deploying AI systems in safety-critical settings (e.g., a clinician working with a medical AI system). However, mitigating risks arising from human error and uncertainty within such human-AI interactions is an important and understudied issue. In this work, we study human uncertainty in the context of concept-based models, a family of AI systems that enable human feedback via concept interventions where an expert intervenes on human-interpretable concepts relevant to the task. Prior work in this space often assumes that humans are oracles who are always certain and correct. Yet, real-world decision-making by humans is prone to occasional mistakes and uncertainty. We study how existing concept-based models deal with uncertain interventions from humans using two novel datasets: UMNIST, a visual dataset with controlled simulated uncertainty based on the MNIST dataset, and CUB-S, a relabeling of the popular CUB concept dataset with rich, densely-annotated soft labels from humans. We show that training with uncertain concept labels may help mitigate weaknesses of concept-based systems when handling uncertain interventions. These results allow us to identify several open challenges, which we argue can be tackled through future multidisciplinary research on building interactive uncertainty-aware systems. To facilitate further research, we release a new elicitation platform, UElic, to collect uncertain feedback from humans in collaborative prediction tasks.