Department of Electronics, Information and Bioengineering
Abstract:Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
Abstract:Recent advances in robot learning increasingly rely on LLM-based task planning, leveraging their ability to bridge natural language with executable actions. While prior works showcased great performances, the widespread adoption of these models in robotics has been challenging as 1) existing methods are often closed-source or computationally intensive, neglecting the actual deployment on real-world physical systems, and 2) there is no universally accepted, plug-and-play representation for robotic task generation. Addressing these challenges, we propose BTGenBot-2, a 1B-parameter open-source small language model that directly converts natural language task descriptions and a list of robot action primitives into executable behavior trees in XML. Unlike prior approaches, BTGenBot-2 enables zero-shot BT generation, error recovery at inference and runtime, while remaining lightweight enough for resource-constrained robots. We further introduce the first standardized benchmark for LLM-based BT generation, covering 52 navigation and manipulation tasks in NVIDIA Isaac Sim. Extensive evaluations demonstrate that BTGenBot-2 consistently outperforms GPT-5, Claude Opus 4.1, and larger open-source models across both functional and non-functional metrics, achieving average success rates of 90.38% in zero-shot and 98.07% in one-shot, while delivering up to 16x faster inference compared to the previous BTGenBot.
Abstract:Accurate prediction of time-to-event outcomes is critical for clinical decision-making, treatment planning, and resource allocation in modern healthcare. While classical survival models such as Cox remain widely adopted in standard practice, they rely on restrictive assumptions, including linear covariate relationships and proportional hazards over time, that often fail to capture real-world clinical dynamics. Recent deep learning approaches like DeepSurv and DeepHit offer improved expressivity but sacrifice interpretability, limiting clinical adoption where trust and transparency are paramount. Hybrid models incorporating Kolmogorov-Arnold Networks (KANs), such as CoxKAN, have begun to address this trade-off but remain constrained by the semi-parametric Cox framework. In this work we introduce SurvKAN, a fully parametric, time-continuous survival model based on KAN architectures that eliminates the proportional hazards constraint. SurvKAN treats time as an explicit input to a KAN that directly predicts the log-hazard function, enabling end-to-end training on the full survival likelihood. Our architecture preserves interpretability through learnable univariate functions that indicate how individual features influence risk over time. Extensive experiments on standard survival benchmarks demonstrate that SurvKAN achieves competitive or superior performance compared to classical and state-of-the-art baselines across concordance and calibration metrics. Additionally, interpretability analyses reveal clinically meaningful patterns that align with medical domain knowledge.
Abstract:Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
Abstract:Survival analysis is essential for clinical decision-making, as it allows practitioners to estimate time-to-event outcomes, stratify patient risk profiles, and guide treatment planning. Deep learning has revolutionized this field with unprecedented predictive capabilities but faces a fundamental trade-off between performance and interpretability. While neural networks achieve high accuracy, their black-box nature limits clinical adoption. Conversely, deep clustering-based methods that stratify patients into interpretable risk groups typically sacrifice predictive power. We propose CONVERSE (CONtrastive Variational Ensemble for Risk Stratification and Estimation), a deep survival model that bridges this gap by unifying variational autoencoders with contrastive learning for interpretable risk stratification. CONVERSE combines variational embeddings with multiple intra- and inter-cluster contrastive losses. Self-paced learning progressively incorporates samples from easy to hard, improving training stability. The model supports cluster-specific survival heads, enabling accurate ensemble predictions. Comprehensive evaluation on four benchmark datasets demonstrates that CONVERSE achieves competitive or superior performance compared to existing deep survival methods, while maintaining meaningful patient stratification.
Abstract:Synthetic data offers a scalable solution for vision-language pre-training, yet current state-of-the-art methods typically rely on scaling up a single generative backbone, which introduces generator-specific spectral biases and limits feature diversity. In this work, we introduce PolyGen, a framework that redefines synthetic data construction by prioritizing manifold coverage and compositional rigor over simple dataset size. PolyGen employs a Polylithic approach to train on the intersection of architecturally distinct generators, effectively marginalizing out model-specific artifacts. Additionally, we introduce a Programmatic Hard Negative curriculum that enforces fine-grained syntactic understanding. By structurally reallocating the same data budget from unique captions to multi-source variations, PolyGen achieves a more robust feature space, outperforming the leading single-source baseline (SynthCLIP) by +19.0% on aggregate multi-task benchmarks and on the SugarCrepe++ compositionality benchmark (+9.1%). These results demonstrate that structural diversity is a more data-efficient scaling law than simply increasing the volume of single-source samples.
Abstract:Vision-Language-Action (VLA) models have emerged as a dominant paradigm for generalist robotic manipulation, unifying perception and control within a single end-to-end architecture. However, despite their success in controlled environments, reliable real-world deployment is severely hindered by their fragility to visual disturbances. While existing literature extensively addresses physical occlusions caused by scene geometry, a critical mode remains largely unexplored: image corruptions. These sensor-level artifacts, ranging from electronic noise and dead pixels to lens contaminants, directly compromise the integrity of the visual signal prior to interpretation. In this work, we quantify this vulnerability, demonstrating that state-of-the-art VLAs such as $π_{0.5}$ and SmolVLA, suffer catastrophic performance degradation, dropping from 90\% success rates to as low as 2\%, under common signal artifacts. To mitigate this, we introduce the Corruption Restoration Transformer (CRT), a plug-and-play and model-agnostic vision transformer designed to immunize VLA models against sensor disturbances. Leveraging an adversarial training objective, CRT restores clean observations from corrupted inputs without requiring computationally expensive fine-tuning of the underlying model. Extensive experiments across the LIBERO and Meta-World benchmarks demonstrate that CRT effectively recovers lost performance, enabling VLAs to maintain near-baseline success rates, even under severe visual corruption.
Abstract:Unlabeled LiDAR logs, in autonomous driving applications, are inherently a gold mine of dense 3D geometry hiding in plain sight - yet they are almost useless without human labels, highlighting a dominant cost barrier for autonomous-perception research. In this work we tackle this bottleneck by leveraging temporal-geometric consistency across LiDAR sweeps to lift and fuse cues from text and 2D vision foundation models directly into 3D, without any manual input. We introduce an unsupervised multi-modal pseudo-labeling method relying on strong geometric priors learned from temporally accumulated LiDAR maps, alongside with a novel iterative update rule that enforces joint geometric-semantic consistency, and vice-versa detecting moving objects from inconsistencies. Our method simultaneously produces 3D semantic labels, 3D bounding boxes, and dense LiDAR scans, demonstrating robust generalization across three datasets. We experimentally validate that our method compares favorably to existing semantic segmentation and object detection pseudo-labeling methods, which often require additional manual supervision. We confirm that even a small fraction of our geometrically consistent, densified LiDAR improves depth prediction by 51.5% and 22.0% MAE in the 80-150 and 150-250 meters range, respectively.
Abstract:With the growing deployment of Vision-Language Models (VLMs), pre-trained on large image-text and video-text datasets, it is critical to equip users with the tools to discern when to trust these systems. However, examining how user trust in VLMs builds and evolves remains an open problem. This problem is exacerbated by the increasing reliance on AI models as judges for experimental validation, to bypass the cost and implications of running participatory design studies directly with users. Following a user-centred approach, this paper presents preliminary results from a workshop with prospective VLM users. Insights from this pilot workshop inform future studies aimed at contextualising trust metrics and strategies for participants' engagement to fit the case of user-VLM interaction.




Abstract:Event-based cameras are becoming a popular solution for efficient, low-power eye tracking. Due to the sparse and asynchronous nature of event data, they require less processing power and offer latencies in the microsecond range. However, many existing solutions are limited to validation on powerful GPUs, with no deployment on real embedded devices. In this paper, we present EETnet, a convolutional neural network designed for eye tracking using purely event-based data, capable of running on microcontrollers with limited resources. Additionally, we outline a methodology to train, evaluate, and quantize the network using a public dataset. Finally, we propose two versions of the architecture: a classification model that detects the pupil on a grid superimposed on the original image, and a regression model that operates at the pixel level.