Abstract:Neural Architecture Search (NAS) automates neural network design, reducing dependence on human expertise. While NAS methods are computationally intensive and dataset-specific, auxiliary predictors reduce the models needing training, decreasing search time. This strategy is used to generate architectures satisfying multiple computational constraints. Recently, Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent. In this field, DiffusionNAG is a state-of-the-art method. This diffusion-based approach streamlines computation, generating architectures optimized for accuracy on unseen datasets without further adaptation. However, by focusing solely on accuracy, DiffusionNAG overlooks other crucial objectives like model complexity, computational efficiency, and inference latency -- factors essential for deploying models in resource-constrained environments. This paper introduces the Pareto-Optimal Many-Objective Neural Architecture Generator (POMONAG), extending DiffusionNAG via a many-objective diffusion process. POMONAG simultaneously considers accuracy, number of parameters, multiply-accumulate operations (MACs), and inference latency. It integrates Performance Predictor models to estimate these metrics and guide diffusion gradients. POMONAG's optimization is enhanced by expanding its training Meta-Dataset, applying Pareto Front Filtering, and refining embeddings for conditional generation. These enhancements enable POMONAG to generate Pareto-optimal architectures that outperform the previous state-of-the-art in performance and efficiency. Results were validated on two search spaces -- NASBench201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
Abstract:Federated learning has emerged as a paradigm for collaborative learning, enabling the development of robust models without the need to centralise sensitive data. However, conventional federated learning techniques have privacy and security vulnerabilities due to the exposure of models, parameters or updates, which can be exploited as an attack surface. This paper presents Federated Knowledge Recycling (FedKR), a cross-silo federated learning approach that uses locally generated synthetic data to facilitate collaboration between institutions. FedKR combines advanced data generation techniques with a dynamic aggregation process to provide greater security against privacy attacks than existing methods, significantly reducing the attack surface. Experimental results on generic and medical datasets show that FedKR achieves competitive performance, with an average improvement in accuracy of 4.24% compared to training models from local data, demonstrating particular effectiveness in data scarcity scenarios.
Abstract:Generative artificial intelligence has transformed the generation of synthetic data, providing innovative solutions to challenges like data scarcity and privacy, which are particularly critical in fields such as medicine. However, the effective use of this synthetic data to train high-performance models remains a significant challenge. This paper addresses this issue by introducing Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers. At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information provided to classifiers through a synthetic dataset regeneration and soft labelling mechanism. The KR pipeline has been tested on a variety of datasets, with a focus on six highly heterogeneous medical image datasets, ranging from retinal images to organ scans. The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases. Furthermore, the resulting models show almost complete immunity to Membership Inference Attacks, manifesting privacy properties missing in models trained with conventional techniques.
Abstract:Accurate classification of medical images is essential for modern diagnostics. Deep learning advancements led clinicians to increasingly use sophisticated models to make faster and more accurate decisions, sometimes replacing human judgment. However, model development is costly and repetitive. Neural Architecture Search (NAS) provides solutions by automating the design of deep learning architectures. This paper presents ZO-DARTS+, a differentiable NAS algorithm that improves search efficiency through a novel method of generating sparse probabilities by bi-level optimization. Experiments on five public medical datasets show that ZO-DARTS+ matches the accuracy of state-of-the-art solutions while reducing search times by up to three times.
Abstract:Recent advances in generative artificial intelligence have enabled the creation of high-quality synthetic data that closely mimics real-world data. This paper explores the adaptation of the Stable Diffusion 2.0 model for generating synthetic datasets, using Transfer Learning, Fine-Tuning and generation parameter optimisation techniques to improve the utility of the dataset for downstream classification tasks. We present a class-conditional version of the model that exploits a Class-Encoder and optimisation of key generation parameters. Our methodology led to synthetic datasets that, in a third of cases, produced models that outperformed those trained on real datasets.
Abstract:The growing global elderly population is expected to increase the prevalence of frailty, posing significant challenges to healthcare systems. Frailty, a syndrome associated with ageing, is characterised by progressive health decline, increased vulnerability to stressors and increased risk of mortality. It represents a significant burden on public health and reduces the quality of life of those affected. The lack of a universally accepted method to assess frailty and a standardised definition highlights a critical research gap. Given this lack and the importance of early prevention, this study presents an innovative approach using an instrumented ink pen to ecologically assess handwriting for age group classification. Content-free handwriting data from 80 healthy participants in different age groups (20-40, 41-60, 61-70 and 70+) were analysed. Fourteen gesture- and tremor-related indicators were computed from the raw data and used in five classification tasks. These tasks included discriminating between adjacent and non-adjacent age groups using Catboost and Logistic Regression classifiers. Results indicate exceptional classifier performance, with accuracy ranging from 82.5% to 97.5%, precision from 81.8% to 100%, recall from 75% to 100% and ROC-AUC from 92.2% to 100%. Model interpretability, facilitated by SHAP analysis, revealed age-dependent sensitivity of temporal and tremor-related handwriting features. Importantly, this classification method offers potential for early detection of abnormal signs of ageing in uncontrolled settings such as remote home monitoring, thereby addressing the critical issue of frailty detection and contributing to improved care for older adults.
Abstract:Deep learning is increasingly impacting various aspects of contemporary society. Artificial neural networks have emerged as the dominant models for solving an expanding range of tasks. The introduction of Neural Architecture Search (NAS) techniques, which enable the automatic design of task-optimal networks, has led to remarkable advances. However, the NAS process is typically associated with long execution times and significant computational resource requirements. Once-For-All (OFA) and its successor, Once-For-All-2 (OFAv2), have been developed to mitigate these challenges. While maintaining exceptional performance and eliminating the need for retraining, they aim to build a single super-network model capable of directly extracting sub-networks satisfying different constraints. Neural Architecture Transfer (NAT) was developed to maximise the effectiveness of extracting sub-networks from a super-network. In this paper, we present NATv2, an extension of NAT that improves multi-objective search algorithms applied to dynamic super-network architectures. NATv2 achieves qualitative improvements in the extractable sub-networks by exploiting the improved super-networks generated by OFAv2 and incorporating new policies for initialisation, pre-processing and updating its networks archive. In addition, a post-processing pipeline based on fine-tuning is introduced. Experimental results show that NATv2 successfully improves NAT and is highly recommended for investigating high-performance architectures with a minimal number of parameters.
Abstract:The remarkable proliferation of deep learning across various industries has underscored the importance of data privacy and security in AI pipelines. As the evolution of sophisticated Membership Inference Attacks (MIAs) threatens the secrecy of individual-specific information used for training deep learning models, Differential Privacy (DP) raises as one of the most utilized techniques to protect models against malicious attacks. However, despite its proven theoretical properties, DP can significantly hamper model performance and increase training time, turning its use impractical in real-world scenarios. Tackling this issue, we present Discriminative Adversarial Privacy (DAP), a novel learning technique designed to address the limitations of DP by achieving a balance between model performance, speed, and privacy. DAP relies on adversarial training based on a novel loss function able to minimise the prediction error while maximising the MIA's error. In addition, we introduce a novel metric named Accuracy Over Privacy (AOP) to capture the performance-privacy trade-off. Finally, to validate our claims, we compare DAP with diverse DP scenarios, providing an analysis of the results from performance, time, and privacy preservation perspectives.
Abstract:Acquiring and annotating suitable datasets for training deep learning models is challenging. This often results in tedious and time-consuming efforts that can hinder research progress. However, generative models have emerged as a promising solution for generating synthetic datasets that can replace or augment real-world data. Despite this, the effectiveness of synthetic data is limited by their inability to fully capture the complexity and diversity of real-world data. To address this issue, we explore the use of Generative Adversarial Networks to generate synthetic datasets for training classifiers that are subsequently evaluated on real-world images. To improve the quality and diversity of the synthetic dataset, we propose three novel post-processing techniques: Dynamic Sample Filtering, Dynamic Dataset Recycle, and Expansion Trick. In addition, we introduce a pipeline called Gap Filler (GaFi), which applies these techniques in an optimal and coordinated manner to maximise classification accuracy on real-world data. Our experiments show that GaFi effectively reduces the gap with real-accuracy scores to an error of 2.03%, 1.78%, and 3.99% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, respectively. These results represent a new state of the art in Classification Accuracy Score and highlight the effectiveness of post-processing techniques in improving the quality of synthetic datasets.
Abstract:The Transformer is a highly successful deep learning model that has revolutionised the world of artificial neural networks, first in natural language processing and later in computer vision. This model is based on the attention mechanism and is able to capture complex semantic relationships between a variety of patterns present in the input data. Precisely because of these characteristics, the Transformer has recently been exploited for time series forecasting problems, assuming a natural adaptability to the domain of continuous numerical series. Despite the acclaimed results in the literature, some works have raised doubts about the robustness and effectiveness of this approach. In this paper, we further investigate the effectiveness of Transformer-based models applied to the domain of time series forecasting, demonstrate their limitations, and propose a set of alternative models that are better performing and significantly less complex. In particular, we empirically show how simplifying Transformer-based forecasting models almost always leads to an improvement, reaching state of the art performance. We also propose shallow models without the attention mechanism, which compete with the overall state of the art in long time series forecasting, and demonstrate their ability to accurately predict time series over extremely long windows. From a methodological perspective, we show how it is always necessary to use a simple baseline to verify the effectiveness of proposed models, and finally, we conclude the paper with a reflection on recent research paths and the opportunity to follow trends and hypes even where it may not be necessary.