Abstract:Accurate classification of medical images is essential for modern diagnostics. Deep learning advancements led clinicians to increasingly use sophisticated models to make faster and more accurate decisions, sometimes replacing human judgment. However, model development is costly and repetitive. Neural Architecture Search (NAS) provides solutions by automating the design of deep learning architectures. This paper presents ZO-DARTS+, a differentiable NAS algorithm that improves search efficiency through a novel method of generating sparse probabilities by bi-level optimization. Experiments on five public medical datasets show that ZO-DARTS+ matches the accuracy of state-of-the-art solutions while reducing search times by up to three times.
Abstract:Neural Architecture Search (NAS) paves the way for the automatic definition of Neural Network (NN) architectures, attracting increasing research attention and offering solutions in various scenarios. This study introduces a novel NAS solution, called Flat Neural Architecture Search (FlatNAS), which explores the interplay between a novel figure of merit based on robustness to weight perturbations and single NN optimization with Sharpness-Aware Minimization (SAM). FlatNAS is the first work in the literature to systematically explore flat regions in the loss landscape of NNs in a NAS procedure, while jointly optimizing their performance on in-distribution data, their out-of-distribution (OOD) robustness, and constraining the number of parameters in their architecture. Differently from current studies primarily concentrating on OOD algorithms, FlatNAS successfully evaluates the impact of NN architectures on OOD robustness, a crucial aspect in real-world applications of machine and deep learning. FlatNAS achieves a good trade-off between performance, OOD generalization, and the number of parameters, by using only in-distribution data in the NAS exploration. The OOD robustness of the NAS-designed models is evaluated by focusing on robustness to input data corruptions, using popular benchmark datasets in the literature.
Abstract:Early Exit Neural Networks (EENNs) endow astandard Deep Neural Network (DNN) with Early Exit Classifiers (EECs), to provide predictions at intermediate points of the processing when enough confidence in classification is achieved. This leads to many benefits in terms of effectiveness and efficiency. Currently, the design of EENNs is carried out manually by experts, a complex and time-consuming task that requires accounting for many aspects, including the correct placement, the thresholding, and the computational overhead of the EECs. For this reason, the research is exploring the use of Neural Architecture Search (NAS) to automatize the design of EENNs. Currently, few comprehensive NAS solutions for EENNs have been proposed in the literature, and a fully automated, joint design strategy taking into consideration both the backbone and the EECs remains an open problem. To this end, this work presents Neural Architecture Search for Hardware Constrained Early Exit Neural Networks (NACHOS), the first NAS framework for the design of optimal EENNs satisfying constraints on the accuracy and the number of Multiply and Accumulate (MAC) operations performed by the EENNs at inference time. In particular, this provides the joint design of backbone and EECs to select a set of admissible (i.e., respecting the constraints) Pareto Optimal Solutions in terms of best tradeoff between the accuracy and number of MACs. The results show that the models designed by NACHOS are competitive with the state-of-the-art EENNs. Additionally, this work investigates the effectiveness of two novel regularization terms designed for the optimization of the auxiliary classifiers of the EENN