Abstract:This paper introduces Redescription Model Mining, a novel approach to identify interpretable patterns across two datasets that share only a subset of attributes and have no common instances. In particular, Redescription Model Mining aims to find pairs of describable data subsets -- one for each dataset -- that induce similar exceptional models with respect to a prespecified model class. To achieve this, we combine two previously separate research areas: Exceptional Model Mining and Redescription Mining. For this new problem setting, we develop interestingness measures to select promising patterns, propose efficient algorithms, and demonstrate their potential on synthetic and real-world data. Uncovered patterns can hint at common underlying phenomena that manifest themselves across datasets, enabling the discovery of possible associations between (combinations of) attributes that do not appear in the same dataset.
Abstract:Land-use regression (LUR) models are important for the assessment of air pollution concentrations in areas without measurement stations. While many such models exist, they often use manually constructed features based on restricted, locally available data. Thus, they are typically hard to reproduce and challenging to adapt to areas beyond those they have been developed for. In this paper, we advocate a paradigm shift for LUR models: We propose the Data-driven, Open, Global (DOG) paradigm that entails models based on purely data-driven approaches using only openly and globally available data. Progress within this paradigm will alleviate the need for experts to adapt models to the local characteristics of the available data sources and thus facilitate the generalizability of air pollution models to new areas on a global scale. In order to illustrate the feasibility of the DOG paradigm for LUR, we introduce a deep learning model called MapLUR. It is based on a convolutional neural network architecture and is trained exclusively on globally and openly available map data without requiring manual feature engineering. We compare our model to state-of-the-art baselines like linear regression, random forests and multi-layer perceptrons using a large data set of modeled $\text{NO}_2$ concentrations in Central London. Our results show that MapLUR significantly outperforms these approaches even though they are provided with manually tailored features. Furthermore, we illustrate that the automatic feature extraction inherent to models based on the DOG paradigm can learn features that are readily interpretable and closely resemble those commonly used in traditional LUR approaches.
Abstract:The k-Nearest Neighbor (kNN) classification approach is conceptually simple - yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an optimal solution, e.g., for datasets with an irregular density distribution of data points. This paper proposes an adaptive kNN classifier where k is chosen dynamically for each instance (point) to be classified, such that the expected accuracy of classification is maximized. We define the expected accuracy as the accuracy of a set of structurally similar observations. An arbitrary similarity function can be used to find these observations. We introduce and evaluate different similarity functions. For the evaluation, we use five different classification tasks based on geo-spatial data. Each classification task consists of (tens of) thousands of items. We demonstrate, that the presented expected accuracy measures can be a good estimator for kNN performance, and the proposed adaptive kNN classifier outperforms common kNN and previously introduced adaptive kNN algorithms. Also, we show that the range of considered k can be significantly reduced to speed up the algorithm without negative influence on classification accuracy.
Abstract:Assessing the degree of semantic relatedness between words is an important task with a variety of semantic applications, such as ontology learning for the Semantic Web, semantic search or query expansion. To accomplish this in an automated fashion, many relatedness measures have been proposed. However, most of these metrics only encode information contained in the underlying corpus and thus do not directly model human intuition. To solve this, we propose to utilize a metric learning approach to improve existing semantic relatedness measures by learning from additional information, such as explicit human feedback. For this, we argue to use word embeddings instead of traditional high-dimensional vector representations in order to leverage their semantic density and to reduce computational cost. We rigorously test our approach on several domains including tagging data as well as publicly available embeddings based on Wikipedia texts and navigation. Human feedback about semantic relatedness for learning and evaluation is extracted from publicly available datasets such as MEN or WS-353. We find that our method can significantly improve semantic relatedness measures by learning from additional information, such as explicit human feedback. For tagging data, we are the first to generate and study embeddings. Our results are of special interest for ontology and recommendation engineers, but also for any other researchers and practitioners of Semantic Web techniques.
Abstract:With regard to a computational representation of literary plot, this paper looks at the use of sentiment analysis for happy ending detection in German novels. Its focus lies on the investigation of previously proposed sentiment features in order to gain insight about the relevance of specific features on the one hand and the implications of their performance on the other hand. Therefore, we study various partitionings of novels, considering the highly variable concept of "ending". We also show that our approach, even though still rather simple, can potentially lead to substantial findings relevant to literary studies.