Abstract:This work considers the problem of sampling from a probability distribution known up to a normalization constant while satisfying a set of statistical constraints specified by the expected values of general nonlinear functions. This problem finds applications in, e.g., Bayesian inference, where it can constrain moments to evaluate counterfactual scenarios or enforce desiderata such as prediction fairness. Methods developed to handle support constraints, such as those based on mirror maps, barriers, and penalties, are not suited for this task. This work therefore relies on gradient descent-ascent dynamics in Wasserstein space to put forward a discrete-time primal-dual Langevin Monte Carlo algorithm (PD-LMC) that simultaneously constrains the target distribution and samples from it. We analyze the convergence of PD-LMC under standard assumptions on the target distribution and constraints, namely (strong) convexity and log-Sobolev inequalities. To do so, we bring classical optimization arguments for saddle-point algorithms to the geometry of Wasserstein space. We illustrate the relevance and effectiveness of PD-LMC in several applications.
Abstract:(Partial) differential equations (PDEs) are fundamental tools for describing natural phenomena, making their solution crucial in science and engineering. While traditional methods, such as the finite element method, provide reliable solutions, their accuracy is often tied to the use of computationally intensive fine meshes. Moreover, they do not naturally account for measurements or prior solutions, and any change in the problem parameters requires results to be fully recomputed. Neural network-based approaches, such as physics-informed neural networks and neural operators, offer a mesh-free alternative by directly fitting those models to the PDE solution. They can also integrate prior knowledge and tackle entire families of PDEs by simply aggregating additional training losses. Nevertheless, they are highly sensitive to hyperparameters such as collocation points and the weights associated with each loss. This paper addresses these challenges by developing a science-constrained learning (SCL) framework. It demonstrates that finding a (weak) solution of a PDE is equivalent to solving a constrained learning problem with worst-case losses. This explains the limitations of previous methods that minimize the expected value of aggregated losses. SCL also organically integrates structural constraints (e.g., invariances) and (partial) measurements or known solutions. The resulting constrained learning problems can be tackled using a practical algorithm that yields accurate solutions across a variety of PDEs, neural network architectures, and prior knowledge levels without extensive hyperparameter tuning and sometimes even at a lower computational cost.
Abstract:With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks.
Abstract:This technical note addresses an issue [arXiv:2310.14683] with the proof (but not the statement) of [arXiv:2003.05030, Proposition 4]. The statement of the proposition is correct, but the proof as written in [arXiv:2003.05030] is not and due to a typo in the manuscript, a reference to the correct proof is effectively missing. In the sequel, we present [arXiv:2003.05030, Proposition 4] and its proof. The proof follows from results in [2] that we reproduce here for clarity of exposition. Since the statement of the proposition remains correct, no change in the results of [arXiv:2003.05030] are required. In particular, Lemma 3 and Lemma 4 showing spectral convergence of graphs to graphons, Theorem 1 showing convergence of the GFT to the WFT, and Theorems 3 and 4 showing convergence of graph to graphon filters, remain valid.
Abstract:Adaptive networks (ANs) are effective real time techniques to process and track events observed by sensor networks and, more recently, to equip Internet of Things (IoT) applications. ANs operate over nodes equipped with collaborative adaptive filters that solve distributively an estimation problem common to the whole network. However, they do not guarantee that nodes do not lose from cooperation, as compared to its non-cooperative operation; that poor nodes are rejected and exceptional nodes estimates reach the entire network; and that performance is uniform over all nodes. In order to enforce such properties, this work introduces the concept of distributed universal estimation, which encompasses the new concepts of local universality, global universality and universality with respect to the non-cooperative operation. We then construct a new cooperation protocol that is proven to be distributively universal, outperforming direct competitors from the literature, as shown by several simulations. Mean and mean-square analytical models are developed, with good agreement between theory and simulations.
Abstract:When deploying machine learning solutions, they must satisfy multiple requirements beyond accuracy, such as fairness, robustness, or safety. These requirements are imposed during training either implicitly, using penalties, or explicitly, using constrained optimization methods based on Lagrangian duality. Either way, specifying requirements is hindered by the presence of compromises and limited prior knowledge about the data. Furthermore, their impact on performance can often only be evaluated by actually solving the learning problem. This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task. To do so, it relaxes the learning constraints in a way that contemplates how much they affect the task at hand by balancing the performance gains obtained from the relaxation against a user-defined cost of that relaxation. We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation. We show conditions under which this balance can be achieved and introduce a practical algorithm to compute it, for which we derive approximation and generalization guarantees. We showcase the advantages of this resilient learning method in image classification tasks involving multiple potential invariances and in heterogeneous federated learning.
Abstract:Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task.
Abstract:Many of the successes of machine learning are based on minimizing an averaged loss function. However, it is well-known that this paradigm suffers from robustness issues that hinder its applicability in safety-critical domains. These issues are often addressed by training against worst-case perturbations of data, a technique known as adversarial training. Although empirically effective, adversarial training can be overly conservative, leading to unfavorable trade-offs between nominal performance and robustness. To this end, in this paper we propose a framework called probabilistic robustness that bridges the gap between the accurate, yet brittle average case and the robust, yet conservative worst case by enforcing robustness to most rather than to all perturbations. From a theoretical point of view, this framework overcomes the trade-offs between the performance and the sample-complexity of worst-case and average-case learning. From a practical point of view, we propose a novel algorithm based on risk-aware optimization that effectively balances average- and worst-case performance at a considerably lower computational cost relative to adversarial training. Our results on MNIST, CIFAR-10, and SVHN illustrate the advantages of this framework on the spectrum from average- to worst-case robustness.
Abstract:Graph neural networks (GNNs) are deep convolutional architectures consisting of layers composed by graph convolutions and pointwise nonlinearities. Due to their invariance and stability properties, GNNs are provably successful at learning representations from network data. However, training them requires matrix computations which can be expensive for large graphs. To address this limitation, we investigate the ability of GNNs to be transferred across graphs. We consider graphons, which are both graph limits and generative models for weighted and stochastic graphs, to define limit objects of graph convolutions and GNNs -- graphon convolutions and graphon neural networks (WNNs) -- which we use as generative models for graph convolutions and GNNs. We show that these graphon filters and WNNs can be approximated by graph filters and GNNs sampled from them on weighted and stochastic graphs. Using these results, we then derive error bounds for transferring graph filters and GNNs across such graphs. These bounds show that transferability increases with the graph size, and reveal a tradeoff between transferability and spectral discriminability which in GNNs is alleviated by the pointwise nonlinearities. These findings are further verified empirically in numerical experiments in movie recommendation and decentralized robot control.
Abstract:Despite strong performance in numerous applications, the fragility of deep learning to input perturbations has raised serious questions about its use in safety-critical domains. While adversarial training can mitigate this issue in practice, state-of-the-art methods are increasingly application-dependent, heuristic in nature, and suffer from fundamental trade-offs between nominal performance and robustness. Moreover, the problem of finding worst-case perturbations is non-convex and underparameterized, both of which engender a non-favorable optimization landscape. Thus, there is a gap between the theory and practice of adversarial training, particularly with respect to when and why adversarial training works. In this paper, we take a constrained learning approach to address these questions and to provide a theoretical foundation for robust learning. In particular, we leverage semi-infinite optimization and non-convex duality theory to show that adversarial training is equivalent to a statistical problem over perturbation distributions, which we characterize completely. Notably, we show that a myriad of previous robust training techniques can be recovered for particular, sub-optimal choices of these distributions. Using these insights, we then propose a hybrid Langevin Monte Carlo approach of which several common algorithms (e.g., PGD) are special cases. Finally, we show that our approach can mitigate the trade-off between nominal and robust performance, yielding state-of-the-art results on MNIST and CIFAR-10. Our code is available at: https://github.com/arobey1/advbench.