Abstract:In this article we provide a stochastic sampling algorithm with polynomial complexity in fixed dimension that leverages the recent advances on diffusion models where it is shown that under mild conditions, sampling can be achieved via an accurate estimation of intermediate scores across the marginals $(p_t)_{t\ge 0}$ of the standard Ornstein-Uhlenbeck process started at the density we wish to sample from. The heart of our method consists into approaching these scores via a computationally cheap estimator and relating the variance of this estimator to the smoothness properties of the forward process. Under the assumption that the density to sample from is $L$-log-smooth and that the forward process is semi-log-concave: $-\nabla^2 \log(p_t) \succeq -\beta I_d$ for some $\beta \geq 0$, we prove that our algorithm achieves an expected $\epsilon$ error in $\text{KL}$ divergence in $O(d^7L^{d+2}\epsilon^{-2(d+3)} (L+\beta)^2d^{2(d+1)})$ time. In particular, our result allows to fully transfer the problem of sampling from a log-smooth distribution into a regularity estimate problem. As an application, we derive an exponential complexity improvement for the problem of sampling from a $L$-log-smooth distribution that is $\alpha$-strongly log-concave distribution outside some ball of radius $R$: after proving that such distributions verify the semi-log-concavity assumption, a result which might be of independent interest, we recover a $poly(R,L,\alpha^{-1}, \epsilon^{-1})$ complexity in fixed dimension which exponentially improves upon the previously known $poly(e^{RL^2}, L,\alpha^{-1}, \log(\epsilon^{-1}))$ complexity in the low precision regime.
Abstract:This work considers the problem of sampling from a probability distribution known up to a normalization constant while satisfying a set of statistical constraints specified by the expected values of general nonlinear functions. This problem finds applications in, e.g., Bayesian inference, where it can constrain moments to evaluate counterfactual scenarios or enforce desiderata such as prediction fairness. Methods developed to handle support constraints, such as those based on mirror maps, barriers, and penalties, are not suited for this task. This work therefore relies on gradient descent-ascent dynamics in Wasserstein space to put forward a discrete-time primal-dual Langevin Monte Carlo algorithm (PD-LMC) that simultaneously constrains the target distribution and samples from it. We analyze the convergence of PD-LMC under standard assumptions on the target distribution and constraints, namely (strong) convexity and log-Sobolev inequalities. To do so, we bring classical optimization arguments for saddle-point algorithms to the geometry of Wasserstein space. We illustrate the relevance and effectiveness of PD-LMC in several applications.
Abstract:Geometric tempering is a popular approach to sampling from challenging multi-modal probability distributions by instead sampling from a sequence of distributions which interpolate, using the geometric mean, between an easier proposal distribution and the target distribution. In this paper, we theoretically investigate the soundness of this approach when the sampling algorithm is Langevin dynamics, proving both upper and lower bounds. Our upper bounds are the first analysis in the literature under functional inequalities. They assert the convergence of tempered Langevin in continuous and discrete-time, and their minimization leads to closed-form optimal tempering schedules for some pairs of proposal and target distributions. Our lower bounds demonstrate a simple case where the geometric tempering takes exponential time, and further reveal that the geometric tempering can suffer from poor functional inequalities and slow convergence, even when the target distribution is well-conditioned. Overall, our results indicate that geometric tempering may not help, and can even be harmful for convergence.
Abstract:In this paper, we study the statistical and geometrical properties of the Kullback-Leibler divergence with kernel covariance operators (KKL) introduced by Bach [2022]. Unlike the classical Kullback-Leibler (KL) divergence that involves density ratios, the KKL compares probability distributions through covariance operators (embeddings) in a reproducible kernel Hilbert space (RKHS), and compute the Kullback-Leibler quantum divergence. This novel divergence hence shares parallel but different aspects with both the standard Kullback-Leibler between probability distributions and kernel embeddings metrics such as the maximum mean discrepancy. A limitation faced with the original KKL divergence is its inability to be defined for distributions with disjoint supports. To solve this problem, we propose in this paper a regularised variant that guarantees that the divergence is well defined for all distributions. We derive bounds that quantify the deviation of the regularised KKL to the original one, as well as finite-sample bounds. In addition, we provide a closed-form expression for the regularised KKL, specifically applicable when the distributions consist of finite sets of points, which makes it implementable. Furthermore, we derive a Wasserstein gradient descent scheme of the KKL divergence in the case of discrete distributions, and study empirically its properties to transport a set of points to a target distribution.
Abstract:Diffusion models are state-of-the-art methods in generative modeling when samples from a target probability distribution are available, and can be efficiently sampled, using score matching to estimate score vectors guiding a Langevin process. However, in the setting where samples from the target are not available, e.g. when this target's density is known up to a normalization constant, the score estimation task is challenging. Previous approaches rely on Monte Carlo estimators that are either computationally heavy to implement or sample-inefficient. In this work, we propose a computationally attractive alternative, relying on the so-called dilation path, that yields score vectors that are available in closed-form. This path interpolates between a Dirac and the target distribution using a convolution. We propose a simple implementation of Langevin dynamics guided by the dilation path, using adaptive step-sizes. We illustrate the results of our sampling method on a range of tasks, and shows it performs better than classical alternatives.
Abstract:As the problem of minimizing functionals on the Wasserstein space encompasses many applications in machine learning, different optimization algorithms on $\mathbb{R}^d$ have received their counterpart analog on the Wasserstein space. We focus here on lifting two explicit algorithms: mirror descent and preconditioned gradient descent. These algorithms have been introduced to better capture the geometry of the function to minimize and are provably convergent under appropriate (namely relative) smoothness and convexity conditions. Adapting these notions to the Wasserstein space, we prove guarantees of convergence of some Wasserstein-gradient-based discrete-time schemes for new pairings of objective functionals and regularizers. The difficulty here is to carefully select along which curves the functionals should be smooth and convex. We illustrate the advantages of adapting the geometry induced by the regularizer on ill-conditioned optimization tasks, and showcase the improvement of choosing different discrepancies and geometries in a computational biology task of aligning single-cells.
Abstract:Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) divergence. Despite its empirical success, the theoretical properties of VI have only received attention recently, and mostly when the parametric family is the one of Gaussians. This work aims to contribute to the theoretical study of VI in the non-Gaussian case by investigating the setting of Mixture of Gaussians with fixed covariance and constant weights. In this view, VI over this specific family can be casted as the minimization of a Mollified relative entropy, i.e. the KL between the convolution (with respect to a Gaussian kernel) of an atomic measure supported on Diracs, and the target distribution. The support of the atomic measure corresponds to the localization of the Gaussian components. Hence, solving variational inference becomes equivalent to optimizing the positions of the Diracs (the particles), which can be done through gradient descent and takes the form of an interacting particle system. We study two sources of error of variational inference in this context when optimizing the mollified relative entropy. The first one is an optimization result, that is a descent lemma establishing that the algorithm decreases the objective at each iteration. The second one is an approximation error, that upper bounds the objective between an optimal finite mixture and the target distribution.
Abstract:Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) divergence. Despite its empirical success, the theoretical properties of VI have only received attention recently, and mostly when the parametric family is the one of Gaussians. This work aims to contribute to the theoretical study of VI in the non-Gaussian case by investigating the setting of Mixture of Gaussians with fixed covariance and constant weights. In this view, VI over this specific family can be casted as the minimization of a Mollified relative entropy, i.e. the KL between the convolution (with respect to a Gaussian kernel) of an atomic measure supported on Diracs, and the target distribution. The support of the atomic measure corresponds to the localization of the Gaussian components. Hence, solving variational inference becomes equivalent to optimizing the positions of the Diracs (the particles), which can be done through gradient descent and takes the form of an interacting particle system. We study two sources of error of variational inference in this context when optimizing the mollified relative entropy. The first one is an optimization result, that is a descent lemma establishing that the algorithm decreases the objective at each iteration. The second one is an approximation error, that upper bounds the objective between an optimal finite mixture and the target distribution.
Abstract:Off-policy learning (OPL) often involves minimizing a risk estimator based on importance weighting to correct bias from the logging policy used to collect data. However, this method can produce an estimator with a high variance. A common solution is to regularize the importance weights and learn the policy by minimizing an estimator with penalties derived from generalization bounds specific to the estimator. This approach, known as pessimism, has gained recent attention but lacks a unified framework for analysis. To address this gap, we introduce a comprehensive PAC-Bayesian framework to examine pessimism with regularized importance weighting. We derive a tractable PAC-Bayesian generalization bound that universally applies to common importance weight regularizations, enabling their comparison within a single framework. Our empirical results challenge common understanding, demonstrating the effectiveness of standard IW regularization techniques.
Abstract:In interactive systems, actions are often correlated, presenting an opportunity for more sample-efficient off-policy evaluation (OPE) and learning (OPL) in large action spaces. We introduce a unified Bayesian framework to capture these correlations through structured and informative priors. In this framework, we propose sDM, a generic Bayesian approach designed for OPE and OPL, grounded in both algorithmic and theoretical foundations. Notably, sDM leverages action correlations without compromising computational efficiency. Moreover, inspired by online Bayesian bandits, we introduce Bayesian metrics that assess the average performance of algorithms across multiple problem instances, deviating from the conventional worst-case assessments. We analyze sDM in OPE and OPL, highlighting the benefits of leveraging action correlations. Empirical evidence showcases the strong performance of sDM.