Abstract:In this article we provide a stochastic sampling algorithm with polynomial complexity in fixed dimension that leverages the recent advances on diffusion models where it is shown that under mild conditions, sampling can be achieved via an accurate estimation of intermediate scores across the marginals $(p_t)_{t\ge 0}$ of the standard Ornstein-Uhlenbeck process started at the density we wish to sample from. The heart of our method consists into approaching these scores via a computationally cheap estimator and relating the variance of this estimator to the smoothness properties of the forward process. Under the assumption that the density to sample from is $L$-log-smooth and that the forward process is semi-log-concave: $-\nabla^2 \log(p_t) \succeq -\beta I_d$ for some $\beta \geq 0$, we prove that our algorithm achieves an expected $\epsilon$ error in $\text{KL}$ divergence in $O(d^7L^{d+2}\epsilon^{-2(d+3)} (L+\beta)^2d^{2(d+1)})$ time. In particular, our result allows to fully transfer the problem of sampling from a log-smooth distribution into a regularity estimate problem. As an application, we derive an exponential complexity improvement for the problem of sampling from a $L$-log-smooth distribution that is $\alpha$-strongly log-concave distribution outside some ball of radius $R$: after proving that such distributions verify the semi-log-concavity assumption, a result which might be of independent interest, we recover a $poly(R,L,\alpha^{-1}, \epsilon^{-1})$ complexity in fixed dimension which exponentially improves upon the previously known $poly(e^{RL^2}, L,\alpha^{-1}, \log(\epsilon^{-1}))$ complexity in the low precision regime.
Abstract:Geometric tempering is a popular approach to sampling from challenging multi-modal probability distributions by instead sampling from a sequence of distributions which interpolate, using the geometric mean, between an easier proposal distribution and the target distribution. In this paper, we theoretically investigate the soundness of this approach when the sampling algorithm is Langevin dynamics, proving both upper and lower bounds. Our upper bounds are the first analysis in the literature under functional inequalities. They assert the convergence of tempered Langevin in continuous and discrete-time, and their minimization leads to closed-form optimal tempering schedules for some pairs of proposal and target distributions. Our lower bounds demonstrate a simple case where the geometric tempering takes exponential time, and further reveal that the geometric tempering can suffer from poor functional inequalities and slow convergence, even when the target distribution is well-conditioned. Overall, our results indicate that geometric tempering may not help, and can even be harmful for convergence.
Abstract:It was recently shown that under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds. However, rather than the distance itself, the object of interest for applications such as generative modeling is the underlying optimal transport map. Hence, computational and statistical guarantees need to be obtained for the estimated maps themselves. In this paper, we propose the first tractable algorithm for which the statistical $L^2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation. Our method is based on solving the semi-dual formulation of optimal transport with an infinite-dimensional sum-of-squares reformulation, and leads to an algorithm which has dimension-free polynomial rates in the number of samples, with potentially exponentially dimension-dependent constants.