Abstract:Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian's rank than random sampling while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving graph rank and GNN transferability compared to random sampling.
Abstract:This technical note addresses an issue [arXiv:2310.14683] with the proof (but not the statement) of [arXiv:2003.05030, Proposition 4]. The statement of the proposition is correct, but the proof as written in [arXiv:2003.05030] is not and due to a typo in the manuscript, a reference to the correct proof is effectively missing. In the sequel, we present [arXiv:2003.05030, Proposition 4] and its proof. The proof follows from results in [2] that we reproduce here for clarity of exposition. Since the statement of the proposition remains correct, no change in the results of [arXiv:2003.05030] are required. In particular, Lemma 3 and Lemma 4 showing spectral convergence of graphs to graphons, Theorem 1 showing convergence of the GFT to the WFT, and Theorems 3 and 4 showing convergence of graph to graphon filters, remain valid.
Abstract:Large-scale graph machine learning is challenging as the complexity of learning models scales with the graph size. Subsampling the graph is a viable alternative, but sampling on graphs is nontrivial as graphs are non-Euclidean. Existing graph sampling techniques require not only computing the spectra of large matrices but also repeating these computations when the graph changes, e.g., grows. In this paper, we introduce a signal sampling theory for a type of graph limit -- the graphon. We prove a Poincar\'e inequality for graphon signals and show that complements of node subsets satisfying this inequality are unique sampling sets for Paley-Wiener spaces of graphon signals. Exploiting connections with spectral clustering and Gaussian elimination, we prove that such sampling sets are consistent in the sense that unique sampling sets on a convergent graph sequence converge to unique sampling sets on the graphon. We then propose a related graphon signal sampling algorithm for large graphs, and demonstrate its good empirical performance on graph machine learning tasks.
Abstract:We propose a theoretical framework for training Graph Neural Networks (GNNs) on large input graphs via training on small, fixed-size sampled subgraphs. This framework is applicable to a wide range of models, including popular sampling-based GNNs, such as GraphSAGE and FastGCN. Leveraging the theory of graph local limits, we prove that, under mild assumptions, parameters learned from training sampling-based GNNs on small samples of a large input graph are within an $\epsilon$-neighborhood of the outcome of training the same architecture on the whole graph. We derive bounds on the number of samples, the size of the graph, and the training steps required as a function of $\epsilon$. Our results give a novel theoretical understanding for using sampling in training GNNs. They also suggest that by training GNNs on small samples of the input graph, practitioners can identify and select the best models, hyperparameters, and sampling algorithms more efficiently. We empirically illustrate our results on a node classification task on large citation graphs, observing that sampling-based GNNs trained on local subgraphs 12$\times$ smaller than the original graph achieve comparable performance to those trained on the input graph.
Abstract:This paper studies the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold, thus encoding geometric information. We consider convolutional MNNs and GNNs where the manifold and the graph convolutions are respectively defined in terms of the Laplace-Beltrami operator and the graph Laplacian. Using the appropriate kernels, we analyze both dense and moderately sparse graphs. We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold. As a byproduct of this analysis, we observe an important trade-off between the discriminability of graph filters and their ability to approximate the desired behavior of manifold filters. We then discuss how this trade-off is ameliorated in neural networks due to the frequency mixing property of nonlinearities. We further derive a transferability corollary for geometric graphs sampled from the same manifold. We validate our results numerically on a navigation control problem and a point cloud classification task.
Abstract:Graph neural networks (GNNs) achieve remarkable performance in graph machine learning tasks but can be hard to train on large-graph data, where their learning dynamics are not well understood. We investigate the training dynamics of large-graph GNNs using graph neural tangent kernels (GNTKs) and graphons. In the limit of large width, optimization of an overparametrized NN is equivalent to kernel regression on the NTK. Here, we investigate how the GNTK evolves as another independent dimension is varied: the graph size. We use graphons to define limit objects -- graphon NNs for GNNs, and graphon NTKs for GNTKs, and prove that, on a sequence of growing graphs, the GNTKs converge to the graphon NTK. We further prove that the eigenspaces of the GNTK, which are related to the problem learning directions and associated learning speeds, converge to the spectrum of the GNTK. This implies that in the large-graph limit, the GNTK fitted on a graph of moderate size can be used to solve the same task on the large-graph and infer the learning dynamics of the large-graph GNN. These results are verified empirically on node regression and node classification tasks.
Abstract:The increasing availability of geometric data has motivated the need for information processing over non-Euclidean domains modeled as manifolds. The building block for information processing architectures with desirable theoretical properties such as invariance and stability is convolutional filtering. Manifold convolutional filters are defined from the manifold diffusion sequence, constructed by successive applications of the Laplace-Beltrami operator to manifold signals. However, the continuous manifold model can only be accessed by sampling discrete points and building an approximate graph model from the sampled manifold. Effective linear information processing on the manifold requires quantifying the error incurred when approximating manifold convolutions with graph convolutions. In this paper, we derive a non-asymptotic error bound for this approximation, showing that convolutional filtering on the sampled manifold converges to continuous manifold filtering. Our findings are further demonstrated empirically on a problem of navigation control.
Abstract:Spectral methods provide consistent estimators for community detection in dense graphs. However, their performance deteriorates as the graphs become sparser. In this work we consider a random graph model that can produce graphs at different levels of sparsity, and we show that graph neural networks can outperform spectral methods on sparse graphs. We illustrate the results with numerical examples in both synthetic and real graphs.
Abstract:Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data. Based on matrix multiplications, convolutions incur in high computational costs leading to scalability limitations in practice. To overcome these limitations, proposed methods rely on training GNNs in smaller number of nodes, and then transferring the GNN to larger graphs. Even though these methods are able to bound the difference between the output of the GNN with different number of nodes, they do not provide guarantees against the optimal GNN on the very large graph. In this paper, we propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon. We propose to grow the size of the graph as we train, and we show that our proposed methodology -- learning by transference -- converges to a neighborhood of a first order stationary point on the graphon data. A numerical experiment validates our proposed approach.
Abstract:Geometric deep learning has gained much attention in recent years due to more available data acquired from non-Euclidean domains. Some examples include point clouds for 3D models and wireless sensor networks in communications. Graphs are common models to connect these discrete data points and capture the underlying geometric structure. With the large amount of these geometric data, graphs with arbitrarily large size tend to converge to a limit model -- the manifold. Deep neural network architectures have been proved as a powerful technique to solve problems based on these data residing on the manifold. In this paper, we propose a manifold neural network (MNN) composed of a bank of manifold convolutional filters and point-wise nonlinearities. We define a manifold convolution operation which is consistent with the discrete graph convolution by discretizing in both space and time domains. To sum up, we focus on the manifold model as the limit of large graphs and construct MNNs, while we can still bring back graph neural networks by the discretization of MNNs. We carry out experiments based on point-cloud dataset to showcase the performance of our proposed MNNs.