Abstract:Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.
Abstract:We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the Flores-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and find that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. We also observe that larger vocabulary size and conscious vocabulary construction correlate with better performance on low-resource languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems.
Abstract:The Shuffle Test is the most common task to evaluate whether NLP models can measure coherence in text. Most recent work uses direct supervision on the task; we show that by simply finetuning a RoBERTa model, we can achieve a near perfect accuracy of 97.8%, a state-of-the-art. We argue that this outstanding performance is unlikely to lead to a good model of text coherence, and suggest that the Shuffle Test should be approached in a Zero-Shot setting: models should be evaluated without being trained on the task itself. We evaluate common models in this setting, such as Generative and Bi-directional Transformers, and find that larger architectures achieve high-performance out-of-the-box. Finally, we suggest the k-Block Shuffle Test, a modification of the original by increasing the size of blocks shuffled. Even though human reader performance remains high (around 95% accuracy), model performance drops from 94% to 78% as block size increases, creating a conceptually simple challenge to benchmark NLP models. Code available: https://github.com/tingofurro/shuffle_test/
Abstract:Recent progress in Natural Language Understanding (NLU) has seen the latest models outperform human performance on many standard tasks. These impressive results have led the community to introspect on dataset limitations, and iterate on more nuanced challenges. In this paper, we introduce the task of HeadLine Grouping (HLG) and a corresponding dataset (HLGD) consisting of 20,056 pairs of news headlines, each labeled with a binary judgement as to whether the pair belongs within the same group. On HLGD, human annotators achieve high performance of around 0.9 F-1, while current state-of-the art Transformer models only reach 0.75 F-1, opening the path for further improvements. We further propose a novel unsupervised Headline Generator Swap model for the task of HeadLine Grouping that achieves within 3 F-1 of the best supervised model. Finally, we analyze high-performing models with consistency tests, and find that models are not consistent in their predictions, revealing modeling limits of current architectures.