Abstract:This white paper, developed through close collaboration between IBM Research and UIUC researchers within the IIDAI Institute, envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads through innovative, full-stack co-design approaches, emphasizing usability, manageability, affordability, adaptability, efficiency, and scalability. By integrating cutting-edge technologies such as generative and agentic AI, cross-layer automation and optimization, unified control plane, and composable and adaptive system architecture, the proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness. Incorporating quantum computing as it matures will enable quantum-accelerated simulations for materials science, climate modeling, and other high-impact domains. Collaborative efforts between academia and industry are central to this vision, driving advancements in foundation models for material design and climate solutions, scalable multimodal data processing, and enhanced physics-based AI emulators for applications like weather forecasting and carbon sequestration. Research priorities include advancing AI agentic systems, LLM as an Abstraction (LLMaaA), AI model optimization and unified abstractions across heterogeneous infrastructure, end-to-end edge-cloud transformation, efficient programming model, middleware and platform, secure infrastructure, application-adaptive cloud systems, and new quantum-classical collaborative workflows. These ideas and solutions encompass both theoretical and practical research questions, requiring coordinated input and support from the research community. This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms, fostering breakthroughs in AI-driven applications and scientific discovery across academia, industry, and society.
Abstract:Large language models (LLMs) have recently become remarkably good at improving developer productivity for high-resource programming languages. These models use two kinds of data: large amounts of unlabeled code samples for pretraining and relatively smaller amounts of labeled code samples for fine-tuning or in-context learning. Unfortunately, many programming languages are low-resource, lacking labeled samples for most tasks and often even lacking unlabeled samples. Therefore, users of low-resource languages (e.g., legacy or new languages) miss out on the benefits of LLMs. Cross-lingual transfer learning uses data from a source language to improve model performance on a target language. It has been well-studied for natural languages, but has received little attention for programming languages. This paper reports extensive experiments on four tasks using a transformer-based LLM and 11 to 41 programming languages to explore the following questions. First, how well cross-lingual transfer works for a given task across different language pairs. Second, given a task and target language, how to best choose a source language. Third, the characteristics of a language pair that are predictive of transfer performance, and fourth, how that depends on the given task.
Abstract:Consider unsupervised clustering of objects drawn from a discrete set, through the use of human intelligence available in crowdsourcing platforms. This paper defines and studies the problem of universal clustering using responses of crowd workers, without knowledge of worker reliability or task difficulty. We model stochastic worker response distributions by incorporating traits of memory for similar objects and traits of distance among differing objects. We are particularly interested in two limiting worker types---temporary workers who retain no memory of responses and long-term workers with memory. We first define clustering algorithms for these limiting cases and then integrate them into an algorithm for the unified worker model. We prove asymptotic consistency of the algorithms and establish sufficient conditions on the sample complexity of the algorithm. Converse arguments establish necessary conditions on sample complexity, proving that the defined algorithms are asymptotically order-optimal in cost.
Abstract:Recent advances in associative memory design through strutured pattern sets and graph-based inference algorithms have allowed the reliable learning and retrieval of an exponential number of patterns. Both these and classical associative memories, however, have assumed internally noiseless computational nodes. This paper considers the setting when internal computations are also noisy. Even if all components are noisy, the final error probability in recall can often be made exceedingly small, as we characterize. There is a threshold phenomenon. We also show how to optimize inference algorithm parameters when knowing statistical properties of internal noise.