Abstract:Multi-camera multiple people tracking has become an increasingly important area of research due to the growing demand for accurate and efficient indoor people tracking systems, particularly in settings such as retail, healthcare centers, and transit hubs. We proposed a novel multi-camera multiple people tracking method that uses anchor-guided clustering for cross-camera re-identification and spatio-temporal consistency for geometry-based cross-camera ID reassigning. Our approach aims to improve the accuracy of tracking by identifying key features that are unique to every individual and utilizing the overlap of views between cameras to predict accurate trajectories without needing the actual camera parameters. The method has demonstrated robustness and effectiveness in handling both synthetic and real-world data. The proposed method is evaluated on CVPR AI City Challenge 2023 dataset, achieving IDF1 of 95.36% with the first-place ranking in the challenge. The code is available at: https://github.com/ipl-uw/AIC23_Track1_UWIPL_ETRI.
Abstract:The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
Abstract:Multi-Object Tracking over humans has improved rapidly with the development of object detection and re-identification. However, multi-actor tracking over humans with similar appearance and nonlinear movement can still be very challenging even for the state-of-the-art tracking algorithm. Current motion-based tracking algorithms often use Kalman Filter to predict the motion of an object, however, its linear movement assumption can cause failure in tracking when the target is not moving linearly. And for multi-players tracking over the sports field, because the players in the same team are usually wearing the same color of jersey, making re-identification even harder both in the short term and long term in the tracking process. In this work, we proposed a motionbased tracking algorithm and three post-processing pipelines for three sports including basketball, football, and volleyball, we successfully handle the tracking of the non-linear movement of players on the sports fields. Experiments result on the testing set of ECCV DeeperAction Challenge SportsMOT Dataset demonstrate the effectiveness of our method, which achieves a HOTA of 73.968, ranking 3rd place on the 2022 Sportsmot workshop final leaderboard.