Abstract:Re-identification (ReID) in multi-object tracking (MOT) for UAVs in maritime computer vision has been challenging for several reasons. More specifically, short-term re-identification (ReID) is difficult due to the nature of the characteristics of small targets and the sudden movement of the drone's gimbal. Long-term ReID suffers from the lack of useful appearance diversity. In response to these challenges, we present an adaptable motion-based MOT algorithm, called Metadata Guided MOT (MG-MOT). This algorithm effectively merges short-term tracking data into coherent long-term tracks, harnessing crucial metadata from UAVs, including GPS position, drone altitude, and camera orientations. Extensive experiments are conducted to validate the efficacy of our MOT algorithm. Utilizing the challenging SeaDroneSee tracking dataset, which encompasses the aforementioned scenarios, we achieve a much-improved performance in the latest edition of the UAV-based Maritime Object Tracking Challenge with a state-of-the-art HOTA of 69.5% and an IDF1 of 85.9% on the testing split.
Abstract:Multi-object tracking algorithms have made significant advancements due to the recent developments in object detection. However, most existing methods primarily focus on tracking pedestrians or vehicles, which exhibit relatively simple and regular motion patterns. Consequently, there is a scarcity of algorithms that address the tracking of targets with irregular or non-linear motion, such as multi-athlete tracking. Furthermore, popular tracking algorithms often rely on the Kalman filter for object motion modeling, which fails to track objects when their motion contradicts the linear motion assumption of the Kalman filter. Due to this reason, we proposed a novel online and robust multi-object tracking approach, named Iterative Scale-Up ExpansionIoU and Deep Features for multi-object tracking. Unlike conventional methods, we abandon the use of the Kalman filter and propose utilizing the iterative scale-up expansion IoU. This approach achieves superior tracking performance without requiring additional training data or adopting a more robust detector, all while maintaining a lower computational cost compared to other appearance-based methods. Our proposed method demonstrates remarkable effectiveness in tracking irregular motion objects, achieving a score of 75.3% in HOTA. It outperforms all state-of-the-art online tracking algorithms on the SportsMOT dataset, covering various kinds of sport scenarios.
Abstract:Multi-camera multiple people tracking has become an increasingly important area of research due to the growing demand for accurate and efficient indoor people tracking systems, particularly in settings such as retail, healthcare centers, and transit hubs. We proposed a novel multi-camera multiple people tracking method that uses anchor-guided clustering for cross-camera re-identification and spatio-temporal consistency for geometry-based cross-camera ID reassigning. Our approach aims to improve the accuracy of tracking by identifying key features that are unique to every individual and utilizing the overlap of views between cameras to predict accurate trajectories without needing the actual camera parameters. The method has demonstrated robustness and effectiveness in handling both synthetic and real-world data. The proposed method is evaluated on CVPR AI City Challenge 2023 dataset, achieving IDF1 of 95.36% with the first-place ranking in the challenge. The code is available at: https://github.com/ipl-uw/AIC23_Track1_UWIPL_ETRI.
Abstract:This study presents an open data-market platform and a dataset containing 160,000 markers and 18,000 images. We hope that this dataset will bring more new data value and applications In this paper, we introduce the format and usage of the dataset, and we show a demonstration of deep learning vehicle detection trained by this dataset.