Abstract:Recent work on supervised learning [GKR+22] defined the notion of omnipredictors, i.e., predictor functions $p$ over features that are simultaneously competitive for minimizing a family of loss functions $\mathcal{L}$ against a comparator class $\mathcal{C}$. Omniprediction requires approximating the Bayes-optimal predictor beyond the loss minimization paradigm, and has generated significant interest in the learning theory community. However, even for basic settings such as agnostically learning single-index models (SIMs), existing omnipredictor constructions require impractically-large sample complexities and runtimes, and output complex, highly-improper hypotheses. Our main contribution is a new, simple construction of omnipredictors for SIMs. We give a learner outputting an omnipredictor that is $\varepsilon$-competitive on any matching loss induced by a monotone, Lipschitz link function, when the comparator class is bounded linear predictors. Our algorithm requires $\approx \varepsilon^{-4}$ samples and runs in nearly-linear time, and its sample complexity improves to $\approx \varepsilon^{-2}$ if link functions are bi-Lipschitz. This significantly improves upon the only prior known construction, due to [HJKRR18, GHK+23], which used $\gtrsim \varepsilon^{-10}$ samples. We achieve our construction via a new, sharp analysis of the classical Isotron algorithm [KS09, KKKS11] in the challenging agnostic learning setting, of potential independent interest. Previously, Isotron was known to properly learn SIMs in the realizable setting, as well as constant-factor competitive hypotheses under the squared loss [ZWDD24]. As they are based on Isotron, our omnipredictors are multi-index models with $\approx \varepsilon^{-2}$ prediction heads, bringing us closer to the tantalizing goal of proper omniprediction for general loss families and comparators.
Abstract:We develop a new parallel algorithm for minimizing Lipschitz, convex functions with a stochastic subgradient oracle. The total number of queries made and the query depth, i.e., the number of parallel rounds of queries, match the prior state-of-the-art, [CJJLLST23], while improving upon the computational depth by a polynomial factor for sufficiently small accuracy. When combined with previous state-of-the-art methods our result closes a gap between the best-known query depth and the best-known computational depth of parallel algorithms. Our method starts with a ball acceleration framework of previous parallel methods, i.e., [CJJJLST20, ACJJS21], which reduce the problem to minimizing a regularized Gaussian convolution of the function constrained to Euclidean balls. By developing and leveraging new stability properties of the Hessian of this induced function, we depart from prior parallel algorithms and reduce these ball-constrained optimization problems to stochastic unconstrained quadratic minimization problems. Although we are unable to prove concentration of the asymmetric matrices that we use to approximate this Hessian, we nevertheless develop an efficient parallel method for solving these quadratics. Interestingly, our algorithms can be improved using fast matrix multiplication and use nearly-linear work if the matrix multiplication exponent is 2.
Abstract:The $k$-principal component analysis ($k$-PCA) problem is a fundamental algorithmic primitive that is widely-used in data analysis and dimensionality reduction applications. In statistical settings, the goal of $k$-PCA is to identify a top eigenspace of the covariance matrix of a distribution, which we only have implicit access to via samples. Motivated by these implicit settings, we analyze black-box deflation methods as a framework for designing $k$-PCA algorithms, where we model access to the unknown target matrix via a black-box $1$-PCA oracle which returns an approximate top eigenvector, under two popular notions of approximation. Despite being arguably the most natural reduction-based approach to $k$-PCA algorithm design, such black-box methods, which recursively call a $1$-PCA oracle $k$ times, were previously poorly-understood. Our main contribution is significantly sharper bounds on the approximation parameter degradation of deflation methods for $k$-PCA. For a quadratic form notion of approximation we term ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize the parameter regimes where deflation methods are feasible. Moreover, we show that in all feasible regimes, $k$-cPCA deflation algorithms suffer no asymptotic parameter loss for any constant $k$. We apply our framework to obtain state-of-the-art $k$-PCA algorithms robust to dataset contamination, improving prior work both in sample complexity and approximation quality.
Abstract:In the recent literature on machine learning and decision making, calibration has emerged as a desirable and widely-studied statistical property of the outputs of binary prediction models. However, the algorithmic aspects of measuring model calibration have remained relatively less well-explored. Motivated by [BGHN23], which proposed a rigorous framework for measuring distances to calibration, we initiate the algorithmic study of calibration through the lens of property testing. We define the problem of calibration testing from samples where given $n$ draws from a distribution $\mathcal{D}$ on (predictions, binary outcomes), our goal is to distinguish between the case where $\mathcal{D}$ is perfectly calibrated, and the case where $\mathcal{D}$ is $\varepsilon$-far from calibration. We design an algorithm based on approximate linear programming, which solves calibration testing information-theoretically optimally (up to constant factors) in time $O(n^{1.5} \log(n))$. This improves upon state-of-the-art black-box linear program solvers requiring $\Omega(n^\omega)$ time, where $\omega > 2$ is the exponent of matrix multiplication. We also develop algorithms for tolerant variants of our testing problem, and give sample complexity lower bounds for alternative calibration distances to the one considered in this work. Finally, we present preliminary experiments showing that the testing problem we define faithfully captures standard notions of calibration, and that our algorithms scale to accommodate moderate sample sizes.
Abstract:We develop a general framework for finding approximately-optimal preconditioners for solving linear systems. Leveraging this framework we obtain improved runtimes for fundamental preconditioning and linear system solving problems including the following. We give an algorithm which, given positive definite $\mathbf{K} \in \mathbb{R}^{d \times d}$ with $\mathrm{nnz}(\mathbf{K})$ nonzero entries, computes an $\epsilon$-optimal diagonal preconditioner in time $\widetilde{O}(\mathrm{nnz}(\mathbf{K}) \cdot \mathrm{poly}(\kappa^\star,\epsilon^{-1}))$, where $\kappa^\star$ is the optimal condition number of the rescaled matrix. We give an algorithm which, given $\mathbf{M} \in \mathbb{R}^{d \times d}$ that is either the pseudoinverse of a graph Laplacian matrix or a constant spectral approximation of one, solves linear systems in $\mathbf{M}$ in $\widetilde{O}(d^2)$ time. Our diagonal preconditioning results improve state-of-the-art runtimes of $\Omega(d^{3.5})$ attained by general-purpose semidefinite programming, and our solvers improve state-of-the-art runtimes of $\Omega(d^{\omega})$ where $\omega > 2.3$ is the current matrix multiplication constant. We attain our results via new algorithms for a class of semidefinite programs (SDPs) we call matrix-dictionary approximation SDPs, which we leverage to solve an associated problem we call matrix-dictionary recovery.
Abstract:We give a new framework for solving the fundamental problem of low-rank matrix completion, i.e., approximating a rank-$r$ matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ (where $m \ge n$) from random observations. First, we provide an algorithm which completes $\mathbf{M}$ on $99\%$ of rows and columns under no further assumptions on $\mathbf{M}$ from $\approx mr$ samples and using $\approx mr^2$ time. Then, assuming the row and column spans of $\mathbf{M}$ satisfy additional regularity properties, we show how to boost this partial completion guarantee to a full matrix completion algorithm by aggregating solutions to regression problems involving the observations. In the well-studied setting where $\mathbf{M}$ has incoherent row and column spans, our algorithms complete $\mathbf{M}$ to high precision from $mr^{2+o(1)}$ observations in $mr^{3 + o(1)}$ time (omitting logarithmic factors in problem parameters), improving upon the prior state-of-the-art [JN15] which used $\approx mr^5$ samples and $\approx mr^7$ time. Under an assumption on the row and column spans of $\mathbf{M}$ we introduce (which is satisfied by random subspaces with high probability), our sample complexity improves to an almost information-theoretically optimal $mr^{1 + o(1)}$, and our runtime improves to $mr^{2 + o(1)}$. Our runtimes have the appealing property of matching the best known runtime to verify that a rank-$r$ decomposition $\mathbf{U}\mathbf{V}^\top$ agrees with the sampled observations. We also provide robust variants of our algorithms that, given random observations from $\mathbf{M} + \mathbf{N}$ with $\|\mathbf{N}\|_{F} \le \Delta$, complete $\mathbf{M}$ to Frobenius norm distance $\approx r^{1.5}\Delta$ in the same runtimes as the noiseless setting. Prior noisy matrix completion algorithms [CP10] only guaranteed a distance of $\approx \sqrt{n}\Delta$.
Abstract:The development of efficient sampling algorithms catering to non-Euclidean geometries has been a challenging endeavor, as discretization techniques which succeed in the Euclidean setting do not readily carry over to more general settings. We develop a non-Euclidean analog of the recent proximal sampler of [LST21], which naturally induces regularization by an object known as the log-Laplace transform (LLT) of a density. We prove new mathematical properties (with an algorithmic flavor) of the LLT, such as strong convexity-smoothness duality and an isoperimetric inequality, which are used to prove a mixing time on our proximal sampler matching [LST21] under a warm start. As our main application, we show our warm-started sampler improves the value oracle complexity of differentially private convex optimization in $\ell_p$ and Schatten-$p$ norms for $p \in [1, 2]$ to match the Euclidean setting [GLL22], while retaining state-of-the-art excess risk bounds [GLLST23]. We find our investigation of the LLT to be a promising proof-of-concept of its utility as a tool for designing samplers, and outline directions for future exploration.
Abstract:We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
Abstract:We propose a new framework for differentially private optimization of convex functions which are Lipschitz in an arbitrary norm $\normx{\cdot}$. Our algorithms are based on a regularized exponential mechanism which samples from the density $\propto \exp(-k(F+\mu r))$ where $F$ is the empirical loss and $r$ is a regularizer which is strongly convex with respect to $\normx{\cdot}$, generalizing a recent work of \cite{GLL22} to non-Euclidean settings. We show that this mechanism satisfies Gaussian differential privacy and solves both DP-ERM (empirical risk minimization) and DP-SCO (stochastic convex optimization), by using localization tools from convex geometry. Our framework is the first to apply to private convex optimization in general normed spaces, and directly recovers non-private SCO rates achieved by mirror descent, as the privacy parameter $\eps \to \infty$. As applications, for Lipschitz optimization in $\ell_p$ norms for all $p \in (1, 2)$, we obtain the first optimal privacy-utility tradeoffs; for $p = 1$, we improve tradeoffs obtained by the recent works \cite{AsiFKT21, BassilyGN21} by at least a logarithmic factor. Our $\ell_p$ norm and Schatten-$p$ norm optimization frameworks are complemented with polynomial-time samplers whose query complexity we explicitly bound.
Abstract:Sparse recovery is one of the most fundamental and well-studied inverse problems. Standard statistical formulations of the problem are provably solved by general convex programming techniques and more practical, fast (nearly-linear time) iterative methods. However, these latter "fast algorithms" have previously been observed to be brittle in various real-world settings. We investigate the brittleness of fast sparse recovery algorithms to generative model changes through the lens of studying their robustness to a "helpful" semi-random adversary, a framework which tests whether an algorithm overfits to input assumptions. We consider the following basic model: let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a measurement matrix which contains an unknown subset of rows $\mathbf{G} \in \mathbb{R}^{m \times d}$ which are bounded and satisfy the restricted isometry property (RIP), but is otherwise arbitrary. Letting $x^\star \in \mathbb{R}^d$ be $s$-sparse, and given either exact measurements $b = \mathbf{A} x^\star$ or noisy measurements $b = \mathbf{A} x^\star + \xi$, we design algorithms recovering $x^\star$ information-theoretically optimally in nearly-linear time. We extend our algorithm to hold for weaker generative models relaxing our planted RIP assumption to a natural weighted variant, and show that our method's guarantees naturally interpolate the quality of the measurement matrix to, in some parameter regimes, run in sublinear time. Our approach differs from prior fast iterative methods with provable guarantees under semi-random generative models: natural conditions on a submatrix which make sparse recovery tractable are NP-hard to verify. We design a new iterative method tailored to the geometry of sparse recovery which is provably robust to our semi-random model. We hope our approach opens the door to new robust, efficient algorithms for natural statistical inverse problems.