Abstract:The $k$-principal component analysis ($k$-PCA) problem is a fundamental algorithmic primitive that is widely-used in data analysis and dimensionality reduction applications. In statistical settings, the goal of $k$-PCA is to identify a top eigenspace of the covariance matrix of a distribution, which we only have implicit access to via samples. Motivated by these implicit settings, we analyze black-box deflation methods as a framework for designing $k$-PCA algorithms, where we model access to the unknown target matrix via a black-box $1$-PCA oracle which returns an approximate top eigenvector, under two popular notions of approximation. Despite being arguably the most natural reduction-based approach to $k$-PCA algorithm design, such black-box methods, which recursively call a $1$-PCA oracle $k$ times, were previously poorly-understood. Our main contribution is significantly sharper bounds on the approximation parameter degradation of deflation methods for $k$-PCA. For a quadratic form notion of approximation we term ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize the parameter regimes where deflation methods are feasible. Moreover, we show that in all feasible regimes, $k$-cPCA deflation algorithms suffer no asymptotic parameter loss for any constant $k$. We apply our framework to obtain state-of-the-art $k$-PCA algorithms robust to dataset contamination, improving prior work both in sample complexity and approximation quality.
Abstract:We consider the problem of Sparse Principal Component Analysis (PCA) when the ratio $d/n \rightarrow c > 0$. There has been a lot of work on optimal rates on sparse PCA in the offline setting, where all the data is available for multiple passes. In contrast, when the population eigenvector is $s$-sparse, streaming algorithms that have $O(d)$ storage and $O(nd)$ time complexity either typically require strong initialization conditions or have a suboptimal error. We show that a simple algorithm that thresholds and renormalizes the output of Oja's algorithm (the Oja vector) obtains a near-optimal error rate. This is very surprising because, without thresholding, the Oja vector has a large error. Our analysis centers around bounding the entries of the unnormalized Oja vector, which involves the projection of a product of independent random matrices on a random initial vector. This is nontrivial and novel since previous analyses of Oja's algorithm and matrix products have been done when the trace of the population covariance matrix is bounded while in our setting, this quantity can be as large as $n$.
Abstract:In this paper, we propose a non-parametric score to evaluate the quality of the solution to an iterative algorithm for Independent Component Analysis (ICA) with arbitrary Gaussian noise. The novelty of this score stems from the fact that it just assumes a finite second moment of the data and uses the characteristic function to evaluate the quality of the estimated mixing matrix without any knowledge of the parameters of the noise distribution. We also provide a new characteristic function-based contrast function for ICA and propose a fixed point iteration to optimize the corresponding objective function. Finally, we propose a theoretical framework to obtain sufficient conditions for the local and global optima of a family of contrast functions for ICA. This framework uses quasi-orthogonalization inherently, and our results extend the classical analysis of cumulant-based objective functions to noisy ICA. We demonstrate the efficacy of our algorithms via experimental results on simulated datasets.
Abstract:Since its inception in Erikki Oja's seminal paper in 1982, Oja's algorithm has become an established method for streaming principle component analysis (PCA). We study the problem of streaming PCA, where the data-points are sampled from an irreducible, aperiodic, and reversible Markov chain. Our goal is to estimate the top eigenvector of the unknown covariance matrix of the stationary distribution. This setting has implications in situations where data can only be sampled from a Markov Chain Monte Carlo (MCMC) type algorithm, and the goal is to do inference for parameters of the stationary distribution of this chain. Most convergence guarantees for Oja's algorithm in the literature assume that the data-points are sampled IID. For data streams with Markovian dependence, one typically downsamples the data to get a "nearly" independent data stream. In this paper, we obtain the first sharp rate for Oja's algorithm on the entire data, where we remove the logarithmic dependence on $n$ resulting from throwing data away in downsampling strategies.
Abstract:Generating code-switched text is a problem of growing interest, especially given the scarcity of corpora containing large volumes of real code-switched text. In this work, we adapt a state-of-the-art neural machine translation model to generate Hindi-English code-switched sentences starting from monolingual Hindi sentences. We outline a carefully designed curriculum of pretraining steps, including the use of synthetic code-switched text, that enable the model to generate high-quality code-switched text. Using text generated from our model as data augmentation, we show significant reductions in perplexity on a language modeling task, compared to using text from other generative models of CS text. We also show improvements using our text for a downstream code-switched natural language inference task. Our generated text is further subjected to a rigorous evaluation using a human evaluation study and a range of objective metrics, where we show performance comparable (and sometimes even superior) to code-switched text obtained via crowd workers who are native Hindi speakers.