Abstract:In this paper, we propose a non-parametric score to evaluate the quality of the solution to an iterative algorithm for Independent Component Analysis (ICA) with arbitrary Gaussian noise. The novelty of this score stems from the fact that it just assumes a finite second moment of the data and uses the characteristic function to evaluate the quality of the estimated mixing matrix without any knowledge of the parameters of the noise distribution. We also provide a new characteristic function-based contrast function for ICA and propose a fixed point iteration to optimize the corresponding objective function. Finally, we propose a theoretical framework to obtain sufficient conditions for the local and global optima of a family of contrast functions for ICA. This framework uses quasi-orthogonalization inherently, and our results extend the classical analysis of cumulant-based objective functions to noisy ICA. We demonstrate the efficacy of our algorithms via experimental results on simulated datasets.
Abstract:Statistical network analysis primarily focuses on inferring the parameters of an observed network. In many applications, especially in the social sciences, the observed data is the groups formed by individual subjects. In these applications, the network is itself a parameter of a statistical model. Zhao and Weko (2019) propose a model-based approach, called the hub model, to infer implicit networks from grouping behavior. The hub model assumes that each member of the group is brought together by a member of the group called the hub. The hub model belongs to the family of Bernoulli mixture models. Identifiability of parameters is a notoriously difficult problem for Bernoulli mixture models. This paper proves identifiability of the hub model parameters and estimation consistency under mild conditions. Furthermore, this paper generalizes the hub model by introducing a model component that allows hubless groups in which individual nodes spontaneously appear independent of any other individual. We refer to this additional component as the null component. The new model bridges the gap between the hub model and the degenerate case of the mixture model -- the Bernoulli product. Identifiability and consistency are also proved for the new model. Numerical studies are provided to demonstrate the theoretical results.