Abstract:The fusion of raw features from multiple sensors on an autonomous vehicle to create a Bird's Eye View (BEV) representation is crucial for planning and control systems. There is growing interest in using deep learning models for BEV semantic segmentation. Anticipating segmentation errors and improving the explainability of DNNs is essential for autonomous driving, yet it is under-studied. This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation. The benchmark assesses various approaches across three popular datasets using two representative backbones and focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution (OOD) pixels, as well as calibration. Empirical findings highlight the challenges in uncertainty quantification. Our results find that evidential deep learning based approaches show the most promise by efficiently quantifying aleatoric and epistemic uncertainty. We propose the Uncertainty-Focal-Cross-Entropy (UFCE) loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration. Additionally, we introduce a vacuity-scaled regularization term that enhances the model's focus on high uncertainty pixels, improving epistemic uncertainty quantification.
Abstract:Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/Hugo101/HyperEvidentialNN.
Abstract:Foundation models have shown great success in natural language processing, computer vision, and multimodal tasks. FMs have a large number of model parameters, thus requiring a substantial amount of data to help optimize the model during the training. Federated learning has revolutionized machine learning by enabling collaborative learning from decentralized data while still preserving the data privacy of clients. Despite the great benefits foundation models can have empowered by federated learning, they face severe computation, communication, and statistical challenges. In this paper, we propose a novel two-stage federated learning algorithm called FedMS. A global expert is trained in the first stage and a local expert is trained in the second stage to provide better personalization. We construct a Mixture of Foundation Models (MoFM) with these two experts and design a gate neural network with an inserted gate adapter that joins the aggregation every communication round in the second stage. To further adapt to edge computing scenarios with limited computational resources, we design a novel Sparsely Activated LoRA (SAL) algorithm that freezes the pre-trained foundation model parameters inserts low-rank adaptation matrices into transformer blocks and activates them progressively during the training. We employ extensive experiments to verify the effectiveness of FedMS, results show that FedMS outperforms other SOTA baselines by up to 55.25% in default settings.