Abstract:Statistical process monitoring (SPM) methods are essential tools in quality management to check the stability of industrial processes, i.e., to dynamically classify the process state as in control (IC), under normal operating conditions, or out of control (OC), otherwise. Traditional SPM methods are based on unsupervised approaches, which are popular because in most industrial applications the true OC states of the process are not explicitly known. This hampered the development of supervised methods that could instead take advantage of process data containing labels on the true process state, although they still need improvement in dealing with class imbalance, as OC states are rare in high-quality processes, and the dynamic recognition of unseen classes, e.g., the number of possible OC states. This article presents a novel stream-based active learning strategy for SPM that enhances partially hidden Markov models to deal with data streams. The ultimate goal is to optimize labeling resources constrained by a limited budget and dynamically update the possible OC states. The proposed method performance in classifying the true state of the process is assessed through a simulation and a case study on the SPM of a resistance spot welding process in the automotive industry, which motivated this research.
Abstract:Active learning provides a framework to adaptively sample the most informative experiments towards learning an unknown black-box function. Various approaches of active learning have been proposed in the literature, however, they either focus on exploration or exploitation in the design space. Methods that do consider exploration-exploitation simultaneously employ fixed or ad-hoc measures to control the trade-off that may not be optimal. In this paper, we develop a Bayesian hierarchical approach to dynamically balance the exploration-exploitation trade-off as more data points are queried. We subsequently formulate an approximate Bayesian computation approach based on the linear dependence of data samples in the feature space to sample from the posterior distribution of the trade-off parameter obtained from the Bayesian hierarchical model. Simulated and real-world examples show the proposed approach achieves at least 6% and 11% average improvement when compared to pure exploration and exploitation strategies respectively. More importantly, we note that by optimally balancing the trade-off between exploration and exploitation, our approach performs better or at least as well as either pure exploration or pure exploitation.
Abstract:Point cloud data are widely used in manufacturing applications for process inspection, modeling, monitoring and optimization. The state-of-art tensor regression techniques have effectively been used for analysis of structured point cloud data, where the measurements on a uniform grid can be formed into a tensor. However, these techniques are not capable of handling unstructured point cloud data that are often in the form of manifolds. In this paper, we propose a nonlinear dimension reduction approach named Maximum Covariance Unfolding Regression that is able to learn the low-dimensional (LD) manifold of point clouds with the highest correlation with explanatory covariates. This LD manifold is then used for regression modeling and process optimization based on process variables. The performance of the proposed method is subsequently evaluated and compared with benchmark methods through simulations and a case study of steel bracket manufacturing.
Abstract:In the automotive industry, the full cycle of managing in-use vehicle quality issues can take weeks to investigate. The process involves isolating root causes, defining and implementing appropriate treatments, and refining treatments if needed. The main pain-point is the lack of a systematic method to identify causal relationships, evaluate treatment effectiveness, and direct the next actionable treatment if the current treatment was deemed ineffective. This paper will show how we leverage causal Machine Learning (ML) to speed up such processes. A real-word data set collected from on-road vehicles will be used to demonstrate the proposed framework. Open challenges for vehicle quality applications will also be discussed.
Abstract:Cybersecurity of Industrial Control Systems (ICS) is drawing significant concerns as data communication increasingly leverages wireless networks. A lot of data-driven methods were developed for detecting cyberattacks, but few are focused on distinguishing them from equipment faults. In this paper, we develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids. The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory (LSTM) layer, and a Deep Neural Network (DNN). This data-driven framework considers the temporal behavior of a generic physical system that extracts features from the time series of the sensor measurements that can be used for detecting covert attacks, distinguishing them from equipment faults, as well as localize the attack/fault. We evaluate the performance of the proposed method through a realistic simulation study on the IEEE 14-bus model as a typical example of ICS. We compare the performance of the proposed method with the traditional model-based method to show its applicability and efficacy.
Abstract:The use of video-imaging data for in-line process monitoring applications has become more and more popular in the industry. In this framework, spatio-temporal statistical process monitoring methods are needed to capture the relevant information content and signal possible out-of-control states. Video-imaging data are characterized by a spatio-temporal variability structure that depends on the underlying phenomenon, and typical out-of-control patterns are related to the events that are localized both in time and space. In this paper, we propose an integrated spatio-temporal decomposition and regression approach for anomaly detection in video-imaging data. Out-of-control events are typically sparse spatially clustered and temporally consistent. Therefore, the goal is to not only detect the anomaly as quickly as possible ("when") but also locate it ("where"). The proposed approach works by decomposing the original spatio-temporal data into random natural events, sparse spatially clustered and temporally consistent anomalous events, and random noise. Recursive estimation procedures for spatio-temporal regression are presented to enable the real-time implementation of the proposed methodology. Finally, a likelihood ratio test procedure is proposed to detect when and where the hotspot happens. The proposed approach was applied to the analysis of video-imaging data to detect and locate local over-heating phenomena ("hotspots") during the layer-wise process in a metal additive manufacturing process.
Abstract:In point-based sensing systems such as coordinate measuring machines (CMM) and laser ultrasonics where complete sensing is impractical due to the high sensing time and cost, adaptive sensing through a systematic exploration is vital for online inspection and anomaly quantification. Most of the existing sequential sampling methodologies focus on reducing the overall fitting error for the entire sampling space. However, in many anomaly quantification applications, the main goal is to estimate sparse anomalous regions in the pixel-level accurately. In this paper, we develop a novel framework named Adaptive Kernelized Maximum-Minimum Distance AKM$^2$D to speed up the inspection and anomaly detection process through an intelligent sequential sampling scheme integrated with fast estimation and detection. The proposed method balances the sampling efforts between the space-filling sampling (exploration) and focused sampling near the anomalous region (exploitation). The proposed methodology is validated by conducting simulations and a case study of anomaly detection in composite sheets using a guided wave test.
Abstract:The high-dimensionality and volume of large scale multistream data has inhibited significant research progress in developing an integrated monitoring and diagnostics (M&D) approach. This data, also categorized as big data, is becoming common in manufacturing plants. In this paper, we propose an integrated M\&D approach for large scale streaming data. We developed a novel monitoring method named Adaptive Principal Component monitoring (APC) which adaptively chooses PCs that are most likely to vary due to the change for early detection. Importantly, we integrate a novel diagnostic approach, Principal Component Signal Recovery (PCSR), to enable a streamlined SPC. This diagnostics approach draws inspiration from Compressed Sensing and uses Adaptive Lasso for identifying the sparse change in the process. We theoretically motivate our approaches and do a performance evaluation of our integrated M&D method through simulations and case studies.
Abstract:A real-world dataset is provided from a pulp-and-paper manufacturing industry. The dataset comes from a multivariate time series process. The data contains a rare event of paper break that commonly occurs in the industry. The data contains sensor readings at regular time-intervals (x's) and the event label (y). The primary purpose of the data is thought to be building a classification model for early prediction of the rare event. However, it can also be used for multivariate time series data exploration and building other supervised and unsupervised models.
Abstract:Advanced 3D metrology technologies such as Coordinate Measuring Machine (CMM) and laser 3D scanners have facilitated the collection of massive point cloud data, beneficial for process monitoring, control and optimization. However, due to their high dimensionality and structure complexity, modeling and analysis of point clouds are still a challenge. In this paper, we utilize multilinear algebra techniques and propose a set of tensor regression approaches to model the variational patterns of point clouds and to link them to process variables. The performance of the proposed methods is evaluated through simulations and a real case study of turning process optimization.