Helen
Abstract:Routability optimization in modern EDA tools has benefited greatly from using machine learning (ML) models. Constructing and optimizing the performance of ML models continues to be a challenge. Neural Architecture Search (NAS) serves as a tool to aid in the construction and improvement of these models. Traditional NAS techniques struggle to perform well on routability prediction as a result of two primary factors. First, the separation between the training objective and the search objective adds noise to the NAS process. Secondly, the increased variance of the search objective further complicates performing NAS. We craft a novel NAS technique, coined SOAP-NAS, to address these challenges through novel data augmentation techniques and a novel combination of one-shot and predictor-based NAS. Results show that our technique outperforms existing solutions by 40% closer to the ideal performance measured by ROC-AUC (area under the receiver operating characteristic curve) in DRC hotspot detection. SOAPNet is able to achieve an ROC-AUC of 0.9802 and a query time of only 0.461 ms.
Abstract:The rapid development of large language models (LLMs) has significantly transformed the field of artificial intelligence, demonstrating remarkable capabilities in natural language processing and moving towards multi-modal functionality. These models are increasingly integrated into diverse applications, impacting both research and industry. However, their development and deployment present substantial challenges, including the need for extensive computational resources, high energy consumption, and complex software optimizations. Unlike traditional deep learning systems, LLMs require unique optimization strategies for training and inference, focusing on system-level efficiency. This paper surveys hardware and software co-design approaches specifically tailored to address the unique characteristics and constraints of large language models. This survey analyzes the challenges and impacts of LLMs on hardware and algorithm research, exploring algorithm optimization, hardware design, and system-level innovations. It aims to provide a comprehensive understanding of the trade-offs and considerations in LLM-centric computing systems, guiding future advancements in AI. Finally, we summarize the existing efforts in this space and outline future directions toward realizing production-grade co-design methodologies for the next generation of large language models and AI systems.
Abstract:Many intelligent transportation systems are multi-agent systems, i.e., both the traffic participants and the subsystems within the transportation infrastructure can be modeled as interacting agents. The use of AI-based methods to achieve coordination among the different agents systems can provide greater safety over transportation systems containing only human-operated vehicles, and also improve the system efficiency in terms of traffic throughput, sensing range, and enabling collaborative tasks. However, increased autonomy makes the transportation infrastructure vulnerable to compromised vehicular agents or infrastructure. This paper proposes a new framework by embedding the trust authority into transportation infrastructure to systematically quantify the trustworthiness of agents using an epistemic logic known as subjective logic. In this paper, we make the following novel contributions: (i) We propose a framework for using the quantified trustworthiness of agents to enable trust-aware coordination and control. (ii) We demonstrate how to synthesize trust-aware controllers using an approach based on reinforcement learning. (iii) We comprehensively analyze an autonomous intersection management (AIM) case study and develop a trust-aware version called AIM-Trust that leads to lower accident rates in scenarios consisting of a mixture of trusted and untrusted agents.