Abstract:Current humanoid push-recovery strategies often use whole-body motion, yet posture regulation is often overlooked. For instance, during manipulation tasks, the upper body may need to stay upright and have minimal recovery displacement. This paper introduces a novel approach to enhancing humanoid push-recovery performance under unknown disturbances and regulating body posture by tailoring the recovery stepping strategy. We propose a hierarchical-MPC-based scheme that analyzes and detects instability in the prediction window and quickly recovers through adapting gait frequency. Our approach integrates a high-level nonlinear MPC, a posture-aware gait frequency adaptation planner, and a low-level convex locomotion MPC. The planners predict the center of mass (CoM) state trajectories that can be assessed for precursors of potential instability and posture deviation. In simulation, we demonstrate improved maximum recoverable impulse by 131% on average compared with baseline approaches. In hardware experiments, a 125 ms advancement in recovery stepping timing/reflex has been observed with the proposed approach, We also demonstrate improved push-recovery performance and minimized attitude change under 0.2 rad.
Abstract:Dynamic and continuous jumping remains an open yet challenging problem in bipedal robot control. The choice of dynamic models in trajectory optimization (TO) problems plays a huge role in trajectory accuracy and computation efficiency, which normally cannot be ensured simultaneously. In this letter, we propose a novel adaptive-model optimization approach, a unified framework of Adaptive-model TO and Adaptive-frequency Model Predictive Control (MPC), to effectively realize continuous and robust jumping on HECTOR bipedal robot. The proposed Adaptive-model TO fuses adaptive-fidelity dynamics modeling of bipedal jumping motion for model fidelity necessities in different jumping phases to ensure trajectory accuracy and computation efficiency. In addition, conventional approaches have unsynchronized sampling frequencies in TO and real-time control, causing the framework to have mismatched modeling resolutions. We adapt MPC sampling frequency based on TO trajectory resolution in different phases for effective trajectory tracking. In hardware experiments, we have demonstrated robust and dynamic jumps covering a distance of up to 40 cm (57% of robot height). To verify the repeatability of this experiment, we run 53 jumping experiments and achieve 90% success rate. In continuous jumps, we demonstrate continuous bipedal jumping with terrain height perturbations (up to 5 cm) and discontinuities (up to 20 cm gap).
Abstract:Despite their remarkable advancement in locomotion and manipulation, humanoid robots remain challenged by a lack of synchronized loco-manipulation control, hindering their full dynamic potential. In this work, we introduce a versatile and effective approach to controlling and generalizing dynamic locomotion and loco-manipulation on humanoid robots via a Force-and-moment-based Model Predictive Control (MPC). Specifically, we proposed a simplified rigid body dynamics (SRBD) model to take into account both humanoid and object dynamics for humanoid loco-manipulation. This linear dynamics model allows us to directly solve for ground reaction forces and moments via an MPC problem to achieve highly dynamic real-time control. Our proposed framework is highly versatile and generalizable. We introduce HECTOR (Humanoid for Enhanced ConTrol and Open-source Research) platform to demonstrate its effectiveness in hardware experiments. With the proposed framework, HECTOR can maintain exceptional balance during double-leg stance mode, even when subjected to external force disturbances to the body or foot location. In addition, it can execute 3-D dynamic walking on a variety of uneven terrains, including wet grassy surfaces, slopes, randomly placed wood slats, and stacked wood slats up to 6 cm high with the speed of 0.6 m/s. In addition, we have demonstrated dynamic humanoid loco-manipulation over uneven terrain, carrying 2.5 kg load. HECTOR simulations, along with the proposed control framework, are made available as an open-source project. (https://github.com/DRCL-USC/Hector_Simulation).
Abstract:This paper presents a novel approach for controlling humanoid robots pushing heavy objects using kinodynamics-based pose optimization and loco-manipulation MPC. The proposed pose optimization plans the optimal pushing pose for the robot while accounting for the unified object-robot dynamics model in steady state, robot kinematic constraints, and object parameters. The approach is combined with loco-manipulation MPC to track the optimal pose. Coordinating pushing reaction forces and ground reaction forces, the MPC allows accurate tracking in manipulation while maintaining stable locomotion. In numerical validation, the framework enables the humanoid robot to effectively push objects with a variety of parameter setups. The pose optimization generates different pushing poses for each setup and can be efficiently solved as a nonlinear programming (NLP) problem, averaging 250 ms. The proposed control scheme enables the humanoid robot to push object with a mass of up to 20 kg (118$\%$ of the robot's mass). Additionally, the MPC can recover the system when a 120 N force disturbance is applied to the object.
Abstract:This paper presents a novel Adaptive-frequency MPC framework for bipedal locomotion over terrain with uneven stepping stones. In detail, we intend to achieve adaptive foot placement and gait period for bipedal periodic walking gait with this MPC, in order to traverse terrain with discontinuities without slowing down. We pair this adaptive-frequency MPC with a kino-dynamics trajectory optimization for optimal gait periods, center of mass (CoM) trajectory, and foot placements. We use whole-body control (WBC) along with adaptive-frequency MPC to track the optimal trajectories from the offline optimization. In numerical validations, our adaptive-frequency MPC framework with optimization has shown advantages over fixed-frequency MPC. The proposed framework can control the bipedal robot to traverse through uneven stepping stone terrains with perturbed stone heights, widths, and surface shapes while maintaining an average speed of 1.5 m/s.
Abstract:This paper presents a novel method to control humanoid robot dynamic loco-manipulation with multiple contact modes via Multi-contact Model Predictive Control (MPC) framework. In this framework, we proposed a multi-contact dynamics model that can represent different contact modes in loco-manipulation (e.g., hand contact with object and foot contacts with ground). The proposed dynamics model simplifies the object dynamics as external force applied to the system (external force model) to ensure the simplicity and feasibility of the MPC problem. In numerical validations, our Multi-contact MPC framework only needs contact timings of each task and desired states to give MPC the knowledge of changes in contact modes in the prediction horizons in loco-manipulation. The proposed framework can control the humanoid robot to complete multi-tasks dynamic loco-manipulation applications such as efficiently picking up and dropping off objects while turning and walking.
Abstract:In this paper, we propose a novel approach on controlling wheel-legged quadrupedal robots using pose optimization and force control via quadratic programming (QP). Our method allows the robot to leverage wheel torques to navigate the terrain while keeping the wheel traction and balancing the robot body. In detail, we present a rigid body dynamics with wheels that can be used for real-time balancing control of wheel-legged robots. In addition, we introduce an effective pose optimization method for wheel-legged robot's locomotion over uneven terrains with ramps and stairs. The pose optimization utilized a nonlinear programming (NLP) solver to solve for the optimal poses in terms of joint positions based on kinematic and contact constraints during a stair-climbing task with rolling wheels. In simulation, our approach has successfully validated for the problem of a wheel-legged robot climbing up a 0.34m stair with a slope angle of 80 degrees and shown its versatility in multiple-stair climbing with varied stair runs and rises with wheel traction. Experimental validation on the real robot demonstrated the capability of climbing up on a 0.25m stair with a slope angle of 30 degrees.
Abstract:In this paper, we propose a novel framework on force-and-moment-based Model Predictive Control (MPC) for dynamic legged robots. In specific, we present a formulation of MPC designed for 10 degree-of-freedom (DoF) bipedal robots using a simplified rigid body dynamics with input forces and moments. This MPC controller will calculate the optimal inputs applied to the robot, including 3-D forces and 2-D moments at each foot. These desired inputs will then be generated by mapping these forces and moments to motor torques of 5 actuators on each leg. We evaluate our proposed control design on physical simulation of a 10 degree-of-freedom (DoF) bipedal robot. The robot can achieve fast walking speed up to 1.6 m/s on rough terrain, with accurate velocity tracking. With the same control framework, our proposed approach can achieve a wide range of dynamic motions including walking, hopping, and running using the same set of control parameters.