Abstract:Dynamic and continuous jumping remains an open yet challenging problem in bipedal robot control. The choice of dynamic models in trajectory optimization (TO) problems plays a huge role in trajectory accuracy and computation efficiency, which normally cannot be ensured simultaneously. In this letter, we propose a novel adaptive-model optimization approach, a unified framework of Adaptive-model TO and Adaptive-frequency Model Predictive Control (MPC), to effectively realize continuous and robust jumping on HECTOR bipedal robot. The proposed Adaptive-model TO fuses adaptive-fidelity dynamics modeling of bipedal jumping motion for model fidelity necessities in different jumping phases to ensure trajectory accuracy and computation efficiency. In addition, conventional approaches have unsynchronized sampling frequencies in TO and real-time control, causing the framework to have mismatched modeling resolutions. We adapt MPC sampling frequency based on TO trajectory resolution in different phases for effective trajectory tracking. In hardware experiments, we have demonstrated robust and dynamic jumps covering a distance of up to 40 cm (57% of robot height). To verify the repeatability of this experiment, we run 53 jumping experiments and achieve 90% success rate. In continuous jumps, we demonstrate continuous bipedal jumping with terrain height perturbations (up to 5 cm) and discontinuities (up to 20 cm gap).
Abstract:Despite their remarkable advancement in locomotion and manipulation, humanoid robots remain challenged by a lack of synchronized loco-manipulation control, hindering their full dynamic potential. In this work, we introduce a versatile and effective approach to controlling and generalizing dynamic locomotion and loco-manipulation on humanoid robots via a Force-and-moment-based Model Predictive Control (MPC). Specifically, we proposed a simplified rigid body dynamics (SRBD) model to take into account both humanoid and object dynamics for humanoid loco-manipulation. This linear dynamics model allows us to directly solve for ground reaction forces and moments via an MPC problem to achieve highly dynamic real-time control. Our proposed framework is highly versatile and generalizable. We introduce HECTOR (Humanoid for Enhanced ConTrol and Open-source Research) platform to demonstrate its effectiveness in hardware experiments. With the proposed framework, HECTOR can maintain exceptional balance during double-leg stance mode, even when subjected to external force disturbances to the body or foot location. In addition, it can execute 3-D dynamic walking on a variety of uneven terrains, including wet grassy surfaces, slopes, randomly placed wood slats, and stacked wood slats up to 6 cm high with the speed of 0.6 m/s. In addition, we have demonstrated dynamic humanoid loco-manipulation over uneven terrain, carrying 2.5 kg load. HECTOR simulations, along with the proposed control framework, are made available as an open-source project. (https://github.com/DRCL-USC/Hector_Simulation).