Abstract:Current Continual Knowledge Graph Embedding (CKGE) methods primarily rely on translation-based embedding methods, leveraging previously acquired knowledge to initialize new facts. To enhance learning efficiency, these methods often integrate fine-tuning or continual learning strategies. However, this compromises the model's prediction accuracy and the translation-based methods lack support for complex relational structures (multi-hop relations). To tackle this challenge, we propose a novel CKGE framework SoTCKGE grounded in Spatial Offset Transformation. Within this framework, entity positions are defined as being jointly determined by base position vectors and offset vectors. This not only enhances the model's ability to represent complex relational structures but also allows for the embedding update of both new and old knowledge through simple spatial offset transformations, without the need for continuous learning methods. Furthermore, we introduce a hierarchical update strategy and a balanced embedding method to refine the parameter update process, effectively minimizing training costs and augmenting model accuracy. To comprehensively assess the performance of our model, we have conducted extensive experimlents on four publicly accessible datasets and a new dataset constructed by us. Experimental results demonstrate the advantage of our model in enhancing multi-hop relationship learning and further improving prediction accuracy.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:Background and Objective: In neurosurgery, fusing clinical images and depth images that can improve the information and details is beneficial to surgery. We found that the registration of face depth images was invalid frequently using existing methods. To abundant traditional image methods with depth information, a method in registering with depth images and traditional clinical images was investigated. Methods: We used the dlib library, a C++ library that could be used in face recognition, and recognized the key points on faces from the structure light camera and CT image. The two key point clouds were registered for coarse registration by the ICP method. Fine registration was finished after coarse registration by the ICP method. Results: RMSE after coarse and fine registration is as low as 0.995913 mm. Compared with traditional methods, it also takes less time. Conclusions: The new method successfully registered the facial depth image from structure light images and CT with a low error, and that would be promising and efficient in clinical application of neurosurgery.