Abstract:We present a force feedback controller for a dexterous robotic hand equipped with force sensors on its fingertips. Our controller uses the conditional postural synergies framework to generate the grasp postures, i.e. the finger configuration of the robot, at each time step based on forces measured on the robot's fingertips. Using this framework we are able to control the hand during different grasp types using only one variable, the grasp size, which we define as the distance between the tip of the thumb and the index finger. Instead of controlling the finger limbs independently, our controller generates control signals for all the hand joints in a (low-dimensional) shared space (i.e. synergy space). In addition, our approach is modular, which allows to execute various types of precision grips, by changing the synergy space according to the type of grasp. We show that our controller is able to lift objects of various weights and materials, adjust the grasp configuration during changes in the object's weight, and perform object placements and object handovers.
Abstract:Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
Abstract:One-shot action recognition is a challenging problem, especially when the target video can contain one, more or none repetitions of the target action. Solutions to this problem can be used in many real world applications that require automated processing of activity videos. In particular, this work is motivated by the automated analysis of medical therapies that involve action imitation games. The presented approach incorporates a pre-processing step that standardizes heterogeneous motion data conditions and generates descriptive movement representations with a Temporal Convolutional Network for a final one-shot (or few-shot) action recognition. Our method achieves state-of-the-art results on the public NTU-120 one-shot action recognition challenge. Besides, we evaluate the approach on a real use-case of automated video analysis for therapy support with autistic people. The promising results prove its suitability for this kind of application in the wild, providing both quantitative and qualitative measures, essential for the patient evaluation and monitoring.