Abstract:We present our work on developing and training scalable graph foundation models (GFM) using HydraGNN, a multi-headed graph convolutional neural network architecture. HydraGNN expands the boundaries of graph neural network (GNN) in both training scale and data diversity. It abstracts over message passing algorithms, allowing both reproduction of and comparison across algorithmic innovations that define convolution in GNNs. This work discusses a series of optimizations that have allowed scaling up the GFM training to tens of thousands of GPUs on datasets that consist of hundreds of millions of graphs. Our GFMs use multi-task learning (MTL) to simultaneously learn graph-level and node-level properties of atomistic structures, such as the total energy and atomic forces. Using over 150 million atomistic structures for training, we illustrate the performance of our approach along with the lessons learned on two United States Department of Energy (US-DOE) supercomputers, namely the Perlmutter petascale system at the National Energy Research Scientific Computing Center and the Frontier exascale system at Oak Ridge National Laboratory. The HydraGNN architecture enables the GFM to achieve near-linear strong scaling performance using more than 2,000 GPUs on Perlmutter and 16,000 GPUs on Frontier. Hyperparameter optimization (HPO) was performed on over 64,000 GPUs on Frontier to select GFM architectures with high accuracy. Early stopping was applied on each GFM architecture for energy awareness in performing such an extreme-scale task. The training of an ensemble of highest-ranked GFM architectures continued until convergence to establish uncertainty quantification (UQ) capabilities with ensemble learning. Our contribution opens the door for rapidly developing, training, and deploying GFMs using large-scale computational resources to enable AI-accelerated materials discovery and design.
Abstract:Machine learning (ML) techniques and atomistic modeling have rapidly transformed materials design and discovery. Specifically, generative models can swiftly propose promising materials for targeted applications. However, the predicted properties of materials through the generative models often do not match with calculated properties through ab initio calculations. This discrepancy can arise because the generated coordinates are not fully relaxed, whereas the many properties are derived from relaxed structures. Neural network-based potentials (NNPs) can expedite the process by providing relaxed structures from the initially generated ones. Nevertheless, acquiring data to train NNPs for this purpose can be extremely challenging as it needs to encompass previously unknown structures. This study utilized extended ensemble molecular dynamics (MD) to secure a broad range of liquid- and solid-phase configurations in one of the metallic systems, nickel. Then, we could significantly reduce them through active learning without losing much accuracy. We found that the NNP trained from the distilled data could predict different energy-minimized closed-pack crystal structures even though those structures were not explicitly part of the initial data. Furthermore, the data can be translated to other metallic systems (aluminum and niobium), without repeating the sampling and distillation processes. Our approach to data acquisition and distillation has demonstrated the potential to expedite NNP development and enhance materials design and discovery by integrating generative models.
Abstract:Graph Convolutional Neural Network (GCNN) is a popular class of deep learning (DL) models in material science to predict material properties from the graph representation of molecular structures. Training an accurate and comprehensive GCNN surrogate for molecular design requires large-scale graph datasets and is usually a time-consuming process. Recent advances in GPUs and distributed computing open a path to reduce the computational cost for GCNN training effectively. However, efficient utilization of high performance computing (HPC) resources for training requires simultaneously optimizing large-scale data management and scalable stochastic batched optimization techniques. In this work, we focus on building GCNN models on HPC systems to predict material properties of millions of molecules. We use HydraGNN, our in-house library for large-scale GCNN training, leveraging distributed data parallelism in PyTorch. We use ADIOS, a high-performance data management framework for efficient storage and reading of large molecular graph data. We perform parallel training on two open-source large-scale graph datasets to build a GCNN predictor for an important quantum property known as the HOMO-LUMO gap. We measure the scalability, accuracy, and convergence of our approach on two DOE supercomputers: the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) and the Perlmutter system at the National Energy Research Scientific Computing Center (NERSC). We present our experimental results with HydraGNN showing i) reduction of data loading time up to 4.2 times compared with a conventional method and ii) linear scaling performance for training up to 1,024 GPUs on both Summit and Perlmutter.
Abstract:We introduce a multi-tasking graph convolutional neural network, HydraGNN, to simultaneously predict both global and atomic physical properties and demonstrate with ferromagnetic materials. We train HydraGNN on an open-source ab initio density functional theory (DFT) dataset for iron-platinum (FePt) with a fixed body centered tetragonal (BCT) lattice structure and fixed volume to simultaneously predict the mixing enthalpy (a global feature of the system), the atomic charge transfer, and the atomic magnetic moment across configurations that span the entire compositional range. By taking advantage of underlying physical correlations between material properties, multi-task learning (MTL) with HydraGNN provides effective training even with modest amounts of data. Moreover, this is achieved with just one architecture instead of three, as required by single-task learning (STL). The first convolutional layers of the HydraGNN architecture are shared by all learning tasks and extract features common to all material properties. The following layers discriminate the features of the different properties, the results of which are fed to the separate heads of the final layer to produce predictions. Numerical results show that HydraGNN effectively captures the relation between the configurational entropy and the material properties over the entire compositional range. Overall, the accuracy of simultaneous MTL predictions is comparable to the accuracy of the STL predictions. In addition, the computational cost of training HydraGNN for MTL is much lower than the original DFT calculations and also lower than training separate STL models for each property.