Abstract:Recent progress in Neural Causal Models (NCMs) showcased how identification and partial identification of causal effects can be automatically carried out via training of neural generative models that respect the constraints encoded in a given causal graph [Xia et al. 2022, Balazadeh et al. 2022]. However, formal consistency of these methods has only been proven for the case of discrete variables or only for linear causal models. In this work, we prove consistency of partial identification via NCMs in a general setting with both continuous and categorical variables. Further, our results highlight the impact of the design of the underlying neural network architecture in terms of depth and connectivity as well as the importance of applying Lipschitz regularization in the training phase. In particular, we provide a counterexample showing that without Lipschitz regularization the NCM may not be asymptotically consistent. Our results are enabled by new results on the approximability of structural causal models via neural generative models, together with an analysis of the sample complexity of the resulting architectures and how that translates into an error in the constrained optimization problem that defines the partial identification bounds.
Abstract:Gradient dominance property is a condition weaker than strong convexity, yet it sufficiently ensures global convergence for first-order methods even in non-convex optimization. This property finds application in various machine learning domains, including matrix decomposition, linear neural networks, and policy-based reinforcement learning (RL). In this paper, we study the stochastic homogeneous second-order descent method (SHSODM) for gradient-dominated optimization with $\alpha \in [1, 2]$ based on a recently proposed homogenization approach. Theoretically, we show that SHSODM achieves a sample complexity of $O(\epsilon^{-7/(2 \alpha) +1})$ for $\alpha \in [1, 3/2)$ and $\tilde{O}(\epsilon^{-2/\alpha})$ for $\alpha \in [3/2, 2]$. We further provide a SHSODM with a variance reduction technique enjoying an improved sample complexity of $O( \epsilon ^{-( 7-3\alpha ) /( 2\alpha )})$ for $\alpha \in [1,3/2)$. Our results match the state-of-the-art sample complexity bounds for stochastic gradient-dominated optimization without \emph{cubic regularization}. Since the homogenization approach only relies on solving extremal eigenvector problems instead of Newton-type systems, our methods gain the advantage of cheaper iterations and robustness in ill-conditioned problems. Numerical experiments on several RL tasks demonstrate the efficiency of SHSODM compared to other off-the-shelf methods.
Abstract:We study episodic two-player zero-sum Markov games (MGs) in the offline setting, where the goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori. When the dataset does not have uniform coverage over all policy pairs, finding an approximate NE involves challenges in three aspects: (i) distributional shift between the behavior policy and the optimal policy, (ii) function approximation to handle large state space, and (iii) minimax optimization for equilibrium solving. We propose a pessimism-based algorithm, dubbed as pessimistic minimax value iteration (PMVI), which overcomes the distributional shift by constructing pessimistic estimates of the value functions for both players and outputs a policy pair by solving NEs based on the two value functions. Furthermore, we establish a data-dependent upper bound on the suboptimality which recovers a sublinear rate without the assumption on uniform coverage of the dataset. We also prove an information-theoretical lower bound, which suggests that the data-dependent term in the upper bound is intrinsic. Our theoretical results also highlight a notion of "relative uncertainty", which characterizes the necessary and sufficient condition for achieving sample efficiency in offline MGs. To the best of our knowledge, we provide the first nearly minimax optimal result for offline MGs with function approximation.