Abstract:In recent years, deep learning technology has developed rapidly, and the application of deep neural networks in the medical image processing field has become the focus of the spotlight. This paper aims to achieve needle position detection in medical retinal surgery by adopting the target detection algorithm based on YOLOv5 as the basic deep neural network model. The state-of-the-art needle detection approaches for medical surgery mainly focus on needle structure segmentation. Instead of the needle segmentation, the proposed method in this paper contains the angle examination during the needle detection process. This approach also adopts a novel classification method based on the different positions of the needle to improve the model. The experiments demonstrate that the proposed network can accurately detect the needle position and measure the needle angle. The performance test of the proposed method achieves 4.80 for the average Euclidean distance between the detected tip position and the actual tip position. It also obtains an average error of 0.85 degrees for the tip angle across all test sets.
Abstract:Accurate tongue motion estimation is essential for tongue function evaluation. The harmonic phase processing (HARP) method and the phase vector incompressible registration algorithm (PVIRA) based on HARP can generate motion estimates from tagged MRI images, but they suffer from tag jumping due to large motions. This paper proposes a new registration method by combining the stationary velocity fields produced by PVIRA between successive time frames as a new initialization of the final registration stage to avoid tag jumping. The experiment results demonstrate the proposed method can avoid tag jumping and outperform the existing methods on tongue motion estimates.
Abstract:Tagged magnetic resonance imaging (MRI) has been used for decades to observe and quantify the detailed motion of deforming tissue. However, this technique faces several challenges such as tag fading, large motion, long computation times, and difficulties in obtaining diffeomorphic incompressible flow fields. To address these issues, this paper presents a novel unsupervised phase-based 3D motion estimation technique for tagged MRI. We introduce two key innovations. First, we apply a sinusoidal transformation to the harmonic phase input, which enables end-to-end training and avoids the need for phase interpolation. Second, we propose a Jacobian determinant-based learning objective to encourage incompressible flow fields for deforming biological tissues. Our method efficiently estimates 3D motion fields that are accurate, dense, and approximately diffeomorphic and incompressible. The efficacy of the method is assessed using human tongue motion during speech, and includes both healthy controls and patients that have undergone glossectomy. We show that the method outperforms existing approaches, and also exhibits improvements in speed, robustness to tag fading, and large tongue motion.