Abstract:Diffusion Transformers (DiT) have attracted significant attention in research. However, they suffer from a slow convergence rate. In this paper, we aim to accelerate DiT training without any architectural modification. We identify the following issues in the training process: firstly, certain training strategies do not consistently perform well across different data. Secondly, the effectiveness of supervision at specific timesteps is limited. In response, we propose the following contributions: (1) We introduce a new perspective for interpreting the failure of the strategies. Specifically, we slightly extend the definition of Signal-to-Noise Ratio (SNR) and suggest observing the Probability Density Function (PDF) of SNR to understand the essence of the data robustness of the strategy. (2) We conduct numerous experiments and report over one hundred experimental results to empirically summarize a unified accelerating strategy from the perspective of PDF. (3) We develop a new supervision method that further accelerates the training process of DiT. Based on them, we propose FasterDiT, an exceedingly simple and practicable design strategy. With few lines of code modifications, it achieves 2.30 FID on ImageNet 256 resolution at 1000k iterations, which is comparable to DiT (2.27 FID) but 7 times faster in training.
Abstract:The segmentation of cell nuclei in tissue images stained with the blood dye hematoxylin and eosin (H$\&$E) is essential for various clinical applications and analyses. Due to the complex characteristics of cellular morphology, a large receptive field is considered crucial for generating high-quality segmentation. However, previous methods face challenges in achieving a balance between the receptive field and computational burden. To address this issue, we propose LKCell, a high-accuracy and efficient cell segmentation method. Its core insight lies in unleashing the potential of large convolution kernels to achieve computationally efficient large receptive fields. Specifically, (1) We transfer pre-trained large convolution kernel models to the medical domain for the first time, demonstrating their effectiveness in cell segmentation. (2) We analyze the redundancy of previous methods and design a new segmentation decoder based on large convolution kernels. It achieves higher performance while significantly reducing the number of parameters. We evaluate our method on the most challenging benchmark and achieve state-of-the-art results (0.5080 mPQ) in cell nuclei instance segmentation with only 21.6% FLOPs compared with the previous leading method. Our source code and models are available at https://github.com/hustvl/LKCell.
Abstract:The diagnosis and treatment of chest diseases play a crucial role in maintaining human health. X-ray examination has become the most common clinical examination means due to its efficiency and cost-effectiveness. Artificial intelligence analysis methods for chest X-ray images are limited by insufficient annotation data and varying levels of annotation, resulting in weak generalization ability and difficulty in clinical dissemination. Here we present EVA-X, an innovative foundational model based on X-ray images with broad applicability to various chest disease detection tasks. EVA-X is the first X-ray image based self-supervised learning method capable of capturing both semantic and geometric information from unlabeled images for universal X-ray image representation. Through extensive experimentation, EVA-X has demonstrated exceptional performance in chest disease analysis and localization, becoming the first model capable of spanning over 20 different chest diseases and achieving leading results in over 11 different detection tasks in the medical field. Additionally, EVA-X significantly reduces the burden of data annotation in the medical AI field, showcasing strong potential in the domain of few-shot learning. The emergence of EVA-X will greatly propel the development and application of foundational medical models, bringing about revolutionary changes in future medical research and clinical practice. Our codes and models are available at: https://github.com/hustvl/EVA-X.
Abstract:Gaze following aims to interpret human-scene interactions by predicting the person's focal point of gaze. Prevailing approaches often use multi-modality inputs, most of which adopt a two-stage framework. Hence their performance highly depends on the previous prediction accuracy. Others use a single-modality approach with complex decoders, increasing network computational load. Inspired by the remarkable success of pre-trained plain Vision Transformers (ViTs), we introduce a novel single-modality gaze following framework, ViTGaze. In contrast to previous methods, ViTGaze creates a brand new gaze following framework based mainly on powerful encoders (dec. param. less than 1%). Our principal insight lies in that the inter-token interactions within self-attention can be transferred to interactions between humans and scenes. Leveraging this presumption, we formulate a framework consisting of a 4D interaction encoder and a 2D spatial guidance module to extract human-scene interaction information from self-attention maps. Furthermore, our investigation reveals that ViT with self-supervised pre-training exhibits an enhanced ability to extract correlated information. A large number of experiments have been conducted to demonstrate the performance of the proposed method. Our method achieves state-of-the-art (SOTA) performance among all single-modality methods (3.4% improvement on AUC, 5.1% improvement on AP) and very comparable performance against multi-modality methods with 59% number of parameters less.
Abstract:Natural image matting algorithms aim to predict the transparency map (alpha-matte) with the trimap guidance. However, the production of trimaps often requires significant labor, which limits the widespread application of matting algorithms on a large scale. To address the issue, we propose Matte Anything model (MatAny), an interactive natural image matting model which could produce high-quality alpha-matte with various simple hints. The key insight of MatAny is to generate pseudo trimap automatically with contour and transparency prediction. We leverage task-specific vision models to enhance the performance of natural image matting. Specifically, we use the segment anything model (SAM) to predict high-quality contour with user interaction and an open-vocabulary (OV) detector to predict the transparency of any object. Subsequently, a pretrained image matting model generates alpha mattes with pseudo trimaps. MatAny is the interactive matting algorithm with the most supported interaction methods and the best performance to date. It consists of orthogonal vision models without any additional training. We evaluate the performance of MatAny against several current image matting algorithms, and the results demonstrate the significant potential of our approach.
Abstract:Recently, plain vision Transformers (ViTs) have shown impressive performance on various computer vision tasks, thanks to their strong modeling capacity and large-scale pretraining. However, they have not yet conquered the problem of image matting. We hypothesize that image matting could also be boosted by ViTs and present a new efficient and robust ViT-based matting system, named ViTMatte. Our method utilizes (i) a hybrid attention mechanism combined with a convolution neck to help ViTs achieve an excellent performance-computation trade-off in matting tasks. (ii) Additionally, we introduce the detail capture module, which just consists of simple lightweight convolutions to complement the detailed information required by matting. To the best of our knowledge, ViTMatte is the first work to unleash the potential of ViT on image matting with concise adaptation. It inherits many superior properties from ViT to matting, including various pretraining strategies, concise architecture design, and flexible inference strategies. We evaluate ViTMatte on Composition-1k and Distinctions-646, the most commonly used benchmark for image matting, our method achieves state-of-the-art performance and outperforms prior matting works by a large margin.