Abstract:The diagnosis and treatment of chest diseases play a crucial role in maintaining human health. X-ray examination has become the most common clinical examination means due to its efficiency and cost-effectiveness. Artificial intelligence analysis methods for chest X-ray images are limited by insufficient annotation data and varying levels of annotation, resulting in weak generalization ability and difficulty in clinical dissemination. Here we present EVA-X, an innovative foundational model based on X-ray images with broad applicability to various chest disease detection tasks. EVA-X is the first X-ray image based self-supervised learning method capable of capturing both semantic and geometric information from unlabeled images for universal X-ray image representation. Through extensive experimentation, EVA-X has demonstrated exceptional performance in chest disease analysis and localization, becoming the first model capable of spanning over 20 different chest diseases and achieving leading results in over 11 different detection tasks in the medical field. Additionally, EVA-X significantly reduces the burden of data annotation in the medical AI field, showcasing strong potential in the domain of few-shot learning. The emergence of EVA-X will greatly propel the development and application of foundational medical models, bringing about revolutionary changes in future medical research and clinical practice. Our codes and models are available at: https://github.com/hustvl/EVA-X.
Abstract:Gaze following aims to interpret human-scene interactions by predicting the person's focal point of gaze. Prevailing approaches often use multi-modality inputs, most of which adopt a two-stage framework. Hence their performance highly depends on the previous prediction accuracy. Others use a single-modality approach with complex decoders, increasing network computational load. Inspired by the remarkable success of pre-trained plain Vision Transformers (ViTs), we introduce a novel single-modality gaze following framework, ViTGaze. In contrast to previous methods, ViTGaze creates a brand new gaze following framework based mainly on powerful encoders (dec. param. less than 1%). Our principal insight lies in that the inter-token interactions within self-attention can be transferred to interactions between humans and scenes. Leveraging this presumption, we formulate a framework consisting of a 4D interaction encoder and a 2D spatial guidance module to extract human-scene interaction information from self-attention maps. Furthermore, our investigation reveals that ViT with self-supervised pre-training exhibits an enhanced ability to extract correlated information. A large number of experiments have been conducted to demonstrate the performance of the proposed method. Our method achieves state-of-the-art (SOTA) performance among all single-modality methods (3.4% improvement on AUC, 5.1% improvement on AP) and very comparable performance against multi-modality methods with 59% number of parameters less.