Abstract:Patient motion during PET is inevitable. Its long acquisition time not only increases the motion and the associated artifacts but also the patient's discomfort, thus PET acceleration is desirable. However, accelerating PET acquisition will result in reconstructed images with low SNR, and the image quality will still be degraded by motion-induced artifacts. Most of the previous PET motion correction methods are motion type specific that require motion modeling, thus may fail when multiple types of motion present together. Also, those methods are customized for standard long acquisition and could not be directly applied to accelerated PET. To this end, modeling-free universal motion correction reconstruction for accelerated PET is still highly under-explored. In this work, we propose a novel deep learning-aided motion correction and reconstruction framework for accelerated PET, called Fast-MC-PET. Our framework consists of a universal motion correction (UMC) and a short-to-long acquisition reconstruction (SL-Reon) module. The UMC enables modeling-free motion correction by estimating quasi-continuous motion from ultra-short frame reconstructions and using this information for motion-compensated reconstruction. Then, the SL-Recon converts the accelerated UMC image with low counts to a high-quality image with high counts for our final reconstruction output. Our experimental results on human studies show that our Fast-MC-PET can enable 7-fold acceleration and use only 2 minutes acquisition to generate high-quality reconstruction images that outperform/match previous motion correction reconstruction methods using standard 15 minutes long acquisition data.
Abstract:Single-photon emission computed tomography (SPECT) is a widely applied imaging approach for diagnosis of coronary artery diseases. Attenuation maps (u-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve diagnostic accuracy of cardiac SPECT. However, SPECT and CT are obtained sequentially in clinical practice, which potentially induces misregistration between the two scans. Convolutional neural networks (CNN) are powerful tools for medical image registration. Previous CNN-based methods for cross-modality registration either directly concatenated two input modalities as an early feature fusion or extracted image features using two separate CNN modules for a late fusion. These methods do not fully extract or fuse the cross-modality information. Besides, deep-learning-based rigid registration of cardiac SPECT and CT-derived u-maps has not been investigated before. In this paper, we propose a Dual-Branch Squeeze-Fusion-Excitation (DuSFE) module for the registration of cardiac SPECT and CT-derived u-maps. DuSFE fuses the knowledge from multiple modalities to recalibrate both channel-wise and spatial features for each modality. DuSFE can be embedded at multiple convolutional layers to enable feature fusion at different spatial dimensions. Our studies using clinical data demonstrated that a network embedded with DuSFE generated substantial lower registration errors and therefore more accurate AC SPECT images than previous methods.