Abstract:To mitigate the pain of manually tuning hyperparameters of deep neural networks, automated machine learning (AutoML) methods have been developed to search for an optimal set of hyperparameters in large combinatorial search spaces. However, the search results of AutoML methods significantly depend on initial configurations, making it a non-trivial task to find a proper configuration. Therefore, human intervention via a visual analytic approach bears huge potential in this task. In response, we propose HyperTendril, a web-based visual analytics system that supports user-driven hyperparameter tuning processes in a model-agnostic environment. HyperTendril takes a novel approach to effectively steering hyperparameter optimization through an iterative, interactive tuning procedure that allows users to refine the search spaces and the configuration of the AutoML method based on their own insights from given results. Using HyperTendril, users can obtain insights into the complex behaviors of various hyperparameter search algorithms and diagnose their configurations. In addition, HyperTendril supports variable importance analysis to help the users refine their search spaces based on the analysis of relative importance of different hyperparameters and their interaction effects. We present the evaluation demonstrating how HyperTendril helps users steer their tuning processes via a longitudinal user study based on the analysis of interaction logs and in-depth interviews while we deploy our system in a professional industrial environment.
Abstract:Many hyperparameter optimization (HyperOpt) methods assume restricted computing resources and mainly focus on enhancing performance. Here we propose a novel cloud-based HyperOpt (CHOPT) framework which can efficiently utilize shared computing resources while supporting various HyperOpt algorithms. We incorporate convenient web-based user interfaces, visualization, and analysis tools, enabling users to easily control optimization procedures and build up valuable insights with an iterative analysis procedure. Furthermore, our framework can be incorporated with any cloud platform, thus complementarily increasing the efficiency of conventional deep learning frameworks. We demonstrate applications of CHOPT with tasks such as image recognition and question-answering, showing that our framework can find hyperparameter configurations competitive with previous work. We also show CHOPT is capable of providing interesting observations through its analysing tools
Abstract:The boom of deep learning induced many industries and academies to introduce machine learning based approaches into their concern, competitively. However, existing machine learning frameworks are limited to sufficiently fulfill the collaboration and management for both data and models. We proposed NSML, a machine learning as a service (MLaaS) platform, to meet these demands. NSML helps machine learning work be easily launched on a NSML cluster and provides a collaborative environment which can afford development at enterprise scale. Finally, NSML users can deploy their own commercial services with NSML cluster. In addition, NSML furnishes convenient visualization tools which assist the users in analyzing their work. To verify the usefulness and accessibility of NSML, we performed some experiments with common examples. Furthermore, we examined the collaborative advantages of NSML through three competitions with real-world use cases.