Abstract:In supervised learning, models are trained to extract correlations from a static dataset. This often leads to models that rely on high-level misconceptions. To prevent such misconceptions, we must necessarily provide additional information beyond the training data. Existing methods incorporate forms of additional instance-level supervision, such as labels for spurious features or additional labeled data from a balanced distribution. Such strategies can become prohibitively costly for large-scale datasets since they require additional annotation at a scale close to the original training data. We hypothesize that targeted natural language feedback about a model's misconceptions is a more efficient form of additional supervision. We introduce Clarify, a novel interface and method for interactively correcting model misconceptions. Through Clarify, users need only provide a short text description to describe a model's consistent failure patterns. Then, in an entirely automated way, we use such descriptions to improve the training process by reweighting the training data or gathering additional targeted data. Our user studies show that non-expert users can successfully describe model misconceptions via Clarify, improving worst-group accuracy by an average of 17.1% in two datasets. Additionally, we use Clarify to find and rectify 31 novel hard subpopulations in the ImageNet dataset, improving minority-split accuracy from 21.1% to 28.7%.
Abstract:Large-scale generative models enabled the development of AI-powered code completion tools to assist programmers in writing code. However, much like other AI-powered tools, AI-powered code completions are not always accurate, potentially introducing bugs or even security vulnerabilities into code if not properly detected and corrected by a human programmer. One technique that has been proposed and implemented to help programmers identify potential errors is to highlight uncertain tokens. However, there have been no empirical studies exploring the effectiveness of this technique-- nor investigating the different and not-yet-agreed-upon notions of uncertainty in the context of generative models. We explore the question of whether conveying information about uncertainty enables programmers to more quickly and accurately produce code when collaborating with an AI-powered code completion tool, and if so, what measure of uncertainty best fits programmers' needs. Through a mixed-methods study with 30 programmers, we compare three conditions: providing the AI system's code completion alone, highlighting tokens with the lowest likelihood of being generated by the underlying generative model, and highlighting tokens with the highest predicted likelihood of being edited by a programmer. We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits, and is subjectively preferred by study participants. In contrast, highlighting tokens according to their probability of being generated does not provide any benefit over the baseline with no highlighting. We further explore the design space of how to convey uncertainty in AI-powered code completion tools, and find that programmers prefer highlights that are granular, informative, interpretable, and not overwhelming.
Abstract:Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.