Abstract:Long-term memory mechanisms enable Large Language Models (LLMs) to maintain continuity and personalization across extended interaction lifecycles, but they also introduce new and underexplored risks related to fairness. In this work, we study how implicit bias, defined as subtle statistical prejudice, accumulates and propagates within LLMs equipped with long-term memory. To support systematic analysis, we introduce the Decision-based Implicit Bias (DIB) Benchmark, a large-scale dataset comprising 3,776 decision-making scenarios across nine social domains, designed to quantify implicit bias in long-term decision processes. Using a realistic long-horizon simulation framework, we evaluate six state-of-the-art LLMs integrated with three representative memory architectures on DIB and demonstrate that LLMs' implicit bias does not remain static but intensifies over time and propagates across unrelated domains. We further analyze mitigation strategies and show that a static system-level prompting baseline provides limited and short-lived debiasing effects. To address this limitation, we propose Dynamic Memory Tagging (DMT), an agentic intervention that enforces fairness constraints at memory write time. Extensive experimental results show that DMT substantially reduces bias accumulation and effectively curtails cross-domain bias propagation.




Abstract:As large language models (LLMs) appear to behave increasingly human-like in text-based interactions, more and more researchers become interested in investigating personality in LLMs. However, the diversity of psychological personality research and the rapid development of LLMs have led to a broad yet fragmented landscape of studies in this interdisciplinary field. Extensive studies across different research focuses, different personality psychometrics, and different LLMs make it challenging to have a holistic overview and further pose difficulties in applying findings to real-world applications. In this paper, we present a comprehensive review by categorizing current studies into three research problems: self-assessment, exhibition, and recognition, based on the intrinsic characteristics and external manifestations of personality in LLMs. For each problem, we provide a thorough analysis and conduct in-depth comparisons of their corresponding solutions. Besides, we summarize research findings and open challenges from current studies and further discuss their underlying causes. We also collect extensive publicly available resources to facilitate interested researchers and developers. Lastly, we discuss the potential future research directions and application scenarios. Our paper is the first comprehensive survey of up-to-date literature on personality in LLMs. By presenting a clear taxonomy, in-depth analysis, promising future directions, and extensive resource collections, we aim to provide a better understanding and facilitate further advancements in this emerging field.