Abstract:With the increasing use and impact of recommender systems in our daily lives, how to achieve fairness in recommendation has become an important problem. Previous works on fairness-aware recommendation mainly focus on a predefined set of (usually warm-start) users. However, recommender systems often face more challenging fairness issues for new users or cold-start users due to their insufficient amount of interactions. Therefore, it is essential to study whether the trained model still performs fairly for a new set of cold-start users. This paper considers the scenario where the recommender system meets new users who only have limited or even no interaction with the platform, and aims at providing high-quality and fair recommendations to such users effectively. The sufficient interaction data from warm users is treated as the source user domain, while the data from new users is treated as the target user domain, and we consider to transfer the counterfactual fairness from the source users to the target users. To this end, we introduce a framework to achieve transferable counterfactual fairness in recommendation. The proposed method is able to transfer the knowledge of a fair model learned from the source users to the target users with the hope of improving the recommendation performance and keeping the fairness property on the target users. Experiments on two real-world datasets with representative recommendation algorithms show that our method not only promotes fairness for the target users, but also outperforms comparative models in terms of recommendation performance.
Abstract:Human intelligence is able to first learn some basic skills for solving basic problems and then assemble such basic skills into complex skills for solving complex or new problems. For example, the basic skills "dig hole," "put tree," "backfill" and "watering" compose a complex skill "plant a tree". Besides, some basic skills can be reused for solving other problems. For example, the basic skill "dig hole" not only can be used for planting a tree, but also can be used for mining treasures, building a drain, or landfilling. The ability to learn basic skills and reuse them for various tasks is very important for humans because it helps to avoid learning too many skills for solving each individual task, and makes it possible to solve a compositional number of tasks by learning just a few number of basic skills, which saves a considerable amount of memory and computation in the human brain. We believe that machine intelligence should also capture the ability of learning basic skills and reusing them by composing into complex skills. In computer science language, each basic skill is a "module", which is a reusable network of a concrete meaning and performs a specific basic operation. The modules are assembled into a bigger "model" for doing a more complex task. The assembling procedure is adaptive to the input or task, i.e., for a given task, the modules should be assembled into the best model for solving the task. As a result, different inputs or tasks could have different assembled models, which enables Auto-Assembling AI (AAAI). In this work, we propose Modularized Adaptive Neural Architecture Search (MANAS) to demonstrate the above idea. Experiments on different datasets show that the adaptive architecture assembled by MANAS outperforms static global architectures. Further experiments and empirical analysis provide insights to the effectiveness of MANAS.
Abstract:As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond.
Abstract:Graphs can represent relational information among entities and graph structures are widely used in many intelligent tasks such as search, recommendation, and question answering. However, most of the graph-structured data in practice suffers from incompleteness, and thus link prediction becomes an important research problem. Though many models are proposed for link prediction, the following two problems are still less explored: (1) Most methods model each link independently without making use of the rich information from relevant links, and (2) existing models are mostly designed based on associative learning and do not take reasoning into consideration. With these concerns, in this paper, we propose Graph Collaborative Reasoning (GCR), which can use the neighbor link information for relational reasoning on graphs from logical reasoning perspectives. We provide a simple approach to translate a graph structure into logical expressions, so that the link prediction task can be converted into a neural logic reasoning problem. We apply logical constrained neural modules to build the network architecture according to the logical expression and use back propagation to efficiently learn the model parameters, which bridges differentiable learning and symbolic reasoning in a unified architecture. To show the effectiveness of our work, we conduct experiments on graph-related tasks such as link prediction and recommendation based on commonly used benchmark datasets, and our graph collaborative reasoning approach achieves state-of-the-art performance.
Abstract:Recommender systems are gaining increasing and critical impacts on human and society since a growing number of users use them for information seeking and decision making. Therefore, it is crucial to address the potential unfairness problems in recommendations. Just like users have personalized preferences on items, users' demands for fairness are also personalized in many scenarios. Therefore, it is important to provide personalized fair recommendations for users to satisfy their personalized fairness demands. Besides, previous works on fair recommendation mainly focus on association-based fairness. However, it is important to advance from associative fairness notions to causal fairness notions for assessing fairness more properly in recommender systems. Based on the above considerations, this paper focuses on achieving personalized counterfactual fairness for users in recommender systems. To this end, we introduce a framework for achieving counterfactually fair recommendations through adversary learning by generating feature-independent user embeddings for recommendation. The framework allows recommender systems to achieve personalized fairness for users while also covering non-personalized situations. Experiments on two real-world datasets with shallow and deep recommendation algorithms show that our method can generate fairer recommendations for users with a desirable recommendation performance.
Abstract:As a highly data-driven application, recommender systems could be affected by data bias, resulting in unfair results for different data groups, which could be a reason that affects the system performance. Therefore, it is important to identify and solve the unfairness issues in recommendation scenarios. In this paper, we address the unfairness problem in recommender systems from the user perspective. We group users into advantaged and disadvantaged groups according to their level of activity, and conduct experiments to show that current recommender systems will behave unfairly between two groups of users. Specifically, the advantaged users (active) who only account for a small proportion in data enjoy much higher recommendation quality than those disadvantaged users (inactive). Such bias can also affect the overall performance since the disadvantaged users are the majority. To solve this problem, we provide a re-ranking approach to mitigate this unfairness problem by adding constraints over evaluation metrics. The experiments we conducted on several real-world datasets with various recommendation algorithms show that our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
Abstract:Providing personalized explanations for recommendations can help users to understand the underlying insight of the recommendation results, which is helpful to the effectiveness, transparency, persuasiveness and trustworthiness of recommender systems. Current explainable recommendation models mostly generate textual explanations based on pre-defined sentence templates. However, the expressiveness power of template-based explanation sentences are limited to the pre-defined expressions, and manually defining the expressions require significant human efforts. Motivated by this problem, we propose to generate free-text natural language explanations for personalized recommendation. In particular, we propose a hierarchical sequence-to-sequence model (HSS) for personalized explanation generation. Different from conventional sentence generation in NLP research, a great challenge of explanation generation in e-commerce recommendation is that not all sentences in user reviews are of explanation purpose. To solve the problem, we further propose an auto-denoising mechanism based on topical item feature words for sentence generation. Experiments on various e-commerce product domains show that our approach can not only improve the recommendation accuracy, but also the explanation quality in terms of the offline measures and feature words coverage. This research is one of the initial steps to grant intelligent agents with the ability to explain itself based on natural language sentences.
Abstract:Recent years have witnessed the success of deep neural networks in many research areas. The fundamental idea behind the design of most neural networks is to learn similarity patterns from data for prediction and inference, which lacks the ability of cognitive reasoning. However, the concrete ability of reasoning is critical to many theoretical and practical problems. On the other hand, traditional symbolic reasoning methods do well in making logical inference, but they are mostly hard rule-based reasoning, which limits their generalization ability to different tasks since difference tasks may require different rules. Both reasoning and generalization ability are important for prediction tasks such as recommender systems, where reasoning provides strong connection between user history and target items for accurate prediction, and generalization helps the model to draw a robust user portrait over noisy inputs. In this paper, we propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and logic reasoning. LINN is a dynamic neural architecture that builds the computational graph according to input logical expressions. It learns basic logical operations such as AND, OR, NOT as neural modules, and conducts propositional logical reasoning through the network for inference. Experiments on theoretical task show that LINN achieves significant performance on solving logical equations and variables. Furthermore, we test our approach on the practical task of recommendation by formulating the task into a logical inference problem. Experiments show that LINN significantly outperforms state-of-the-art recommendation models in Top-K recommendation, which verifies the potential of LINN in practice.
Abstract:Collaborative Filtering (CF) has been an important approach to recommender systems. However, existing CF methods are mostly designed based on the idea of matching, i.e., by learning user and item embeddings from data using shallow or deep models, they try to capture the relevance patterns in data, so that a user embedding can be matched with appropriate item embeddings using designed or learned similarity functions. We argue that as a cognition rather than a perception intelligent task, recommendation requires not only the ability of pattern recognition and matching from data, but also the ability of logical reasoning in the data. Inspired by recent progress on neural-symbolic machine learning, we propose a neural collaborative reasoning framework to integrate the power of embedding learning and logical reasoning, where the embeddings capture similarity patterns in data from perceptual perspectives, and the logic facilitates cognitive reasoning for informed decision making. An important challenge, however, is to bridge differentiable neural networks and symbolic reasoning in a shared architecture for optimization and inference. To solve the problem, we propose a Modularized Logical Neural Network architecture, which learns basic logical operations such as AND, OR, and NOT as neural modules based on logical regularizer, and learns logic variables as vector embeddings. In this way, each logic expression can be equivalently organized as a neural network, so that logical reasoning and prediction can be conducted in a continuous space. Experiments on several real-world datasets verified the advantages of our framework compared with both traditional shallow and deep models.
Abstract:Recent years have witnessed the great success of deep neural networks in many research areas. The fundamental idea behind the design of most neural networks is to learn similarity patterns from data for prediction and inference, which lacks the ability of logical reasoning. However, the concrete ability of logical reasoning is critical to many theoretical and practical problems. In this paper, we propose Neural Logic Network (NLN), which is a dynamic neural architecture that builds the computational graph according to input logical expressions. It learns basic logical operations as neural modules, and conducts propositional logical reasoning through the network for inference. Experiments on simulated data show that NLN achieves significant performance on solving logical equations. Further experiments on real-world data show that NLN significantly outperforms state-of-the-art models on collaborative filtering and personalized recommendation tasks.