Abstract:This paper investigates how adjustments to deep learning architectures impact model performance in image classification. Small-scale experiments generate initial insights although the trends observed are not consistent with the entire dataset. Filtering operations in the image processing pipeline are crucial, with image filtering before pre-processing yielding better results. The choice and order of layers as well as filter placement significantly impact model performance. This study provides valuable insights into optimizing deep learning models, with potential avenues for future research including collaborative platforms.
Abstract:Cooperative coevolutionary algorithms (CCEAs) divide a given problem in to a number of subproblems and use an evolutionary algorithm to solve each subproblem. This short paper is concerned with the scenario under which only a single, global fitness measure exists. By removing the typically used subproblem partnering mechanism, it is suggested that such CCEAs can be viewed as making use of a generalised version of the global crossover operator introduced in early Evolution Strategies. Using the well-known NK model of fitness landscapes, the effects of varying aspects of global crossover with respect to the ruggedness of the underlying fitness landscape are explored. Results suggest improvements over the most widely used form of CCEAs, something further demonstrated using other well-known test functions.
Abstract:Metrics for measuring the citation sentiment changes were introduced. Citation sentiment changes can be observed from global citation sentiment sequences (GCSSs). With respect to a cited paper, the citation sentiment sequences were analysed across a collection of citing papers ordered by the published time. For analysing GCSSs, Eddy Dissipation Rate (EDR) was adopted, with the hypothesis that the GCSSs pattern differences can be spotted by EDR based method. Preliminary evidence showed that EDR based method holds the potential for analysing a publication's impact in a time series fashion.
Abstract:Bronchoscopy inspection as a follow-up procedure from the radiological imaging plays a key role in lung disease diagnosis and determining treatment plans for the patients. Doctors needs to make a decision whether to biopsy the patients timely when performing bronchoscopy. However, the doctors also needs to be very selective with biopsies as biopsies may cause uncontrollable bleeding of the lung tissue which is life-threaten. To help doctors to be more selective on biopsies and provide a second opinion on diagnosis, in this work, we propose a computer-aided diagnosis (CAD) system for lung diseases including cancers and tuberculosis (TB). The system is developed based on transfer learning. We propose a novel transfer learning method: sentential fine-tuning . Compared to traditional fine-tuning methods, our methods achieves the best performance. We obtained a overall accuracy of 77.0% a dataset of 81 normal cases, 76 tuberculosis cases and 277 lung cancer cases while the other traditional transfer learning methods achieve an accuracy of 73% and 68%. . The detection accuracy of our method for cancers, TB and normal cases are 87%, 54% and 91% respectively. This indicates that the CAD system has potential to improve lung disease diagnosis accuracy in bronchoscopy and it also might be used to be more selective with biopsies.
Abstract:Citation sentiment analysis is an important task in scientific paper analysis. Existing machine learning techniques for citation sentiment analysis are focusing on labor-intensive feature engineering, which requires large annotated corpus. As an automatic feature extraction tool, word2vec has been successfully applied to sentiment analysis of short texts. In this work, I conducted empirical research with the question: how well does word2vec work on the sentiment analysis of citations? The proposed method constructed sentence vectors (sent2vec) by averaging the word embeddings, which were learned from Anthology Collections (ACL-Embeddings). I also investigated polarity-specific word embeddings (PS-Embeddings) for classifying positive and negative citations. The sentence vectors formed a feature space, to which the examined citation sentence was mapped to. Those features were input into classifiers (support vector machines) for supervised classification. Using 10-cross-validation scheme, evaluation was conducted on a set of annotated citations. The results showed that word embeddings are effective on classifying positive and negative citations. However, hand-crafted features performed better for the overall classification.
Abstract:In comparison with document summarization on the articles from social media and newswire, argumentative zoning (AZ) is an important task in scientific paper analysis. Traditional methodology to carry on this task relies on feature engineering from different levels. In this paper, three models of generating sentence vectors for the task of sentence classification were explored and compared. The proposed approach builds sentence representations using learned embeddings based on neural network. The learned word embeddings formed a feature space, to which the examined sentence is mapped to. Those features are input into the classifiers for supervised classification. Using 10-cross-validation scheme, evaluation was conducted on the Argumentative-Zoning (AZ) annotated articles. The results showed that simply averaging the word vectors in a sentence works better than the paragraph to vector algorithm and by integrating specific cuewords into the loss function of the neural network can improve the classification performance. In comparison with the hand-crafted features, the word2vec method won for most of the categories. However, the hand-crafted features showed their strength on classifying some of the categories.
Abstract:This paper is about authenticating genuine van Gogh paintings from forgeries. The authentication process depends on two key steps: feature extraction and outlier detection. In this paper, a geometric tight frame and some simple statistics of the tight frame coefficients are used to extract features from the paintings. Then a forward stage-wise rank boosting is used to select a small set of features for more accurate classification so that van Gogh paintings are highly concentrated towards some center point while forgeries are spread out as outliers. Numerical results show that our method can achieve 86.08% classification accuracy under the leave-one-out cross-validation procedure. Our method also identifies five features that are much more predominant than other features. Using just these five features for classification, our method can give 88.61% classification accuracy which is the highest so far reported in literature. Evaluation of the five features is also performed on two hundred datasets generated by bootstrap sampling with replacement. The median and the mean are 88.61% and 87.77% respectively. Our results show that a small set of statistics of the tight frame coefficients along certain orientations can serve as discriminative features for van Gogh paintings. It is more important to look at the tail distributions of such directional coefficients than mean values and standard deviations. It reflects a highly consistent style in van Gogh's brushstroke movements, where many forgeries demonstrate a more diverse spread in these features.