Abstract:Following the advancement of large language models (LLMs), the development of LLM-based autonomous agents has become increasingly prevalent. As a result, the need to understand the security vulnerabilities of these agents has become a critical task. We examine how ReAct agents can be exploited using a straightforward yet effective method we refer to as the foot-in-the-door attack. Our experiments show that indirect prompt injection attacks, prompted by harmless and unrelated requests (such as basic calculations) can significantly increase the likelihood of the agent performing subsequent malicious actions. Our results show that once a ReAct agents thought includes a specific tool or action, the likelihood of executing this tool in the subsequent steps increases significantly, as the agent seldom re-evaluates its actions. Consequently, even random, harmless requests can establish a foot-in-the-door, allowing an attacker to embed malicious instructions into the agents thought process, making it more susceptible to harmful directives. To mitigate this vulnerability, we propose implementing a simple reflection mechanism that prompts the agent to reassess the safety of its actions during execution, which can help reduce the success of such attacks.
Abstract:In the digital era, the widespread use of APIs is evident. However, scalable utilization of APIs poses a challenge due to structure divergence observed in online API documentation. This underscores the need for automatic tools to facilitate API consumption. A viable approach involves the conversion of documentation into an API Specification format. While previous attempts have been made using rule-based methods, these approaches encountered difficulties in generalizing across diverse documentation. In this paper we introduce SpeCrawler, a comprehensive system that utilizes large language models (LLMs) to generate OpenAPI Specifications from diverse API documentation through a carefully crafted pipeline. By creating a standardized format for numerous APIs, SpeCrawler aids in streamlining integration processes within API orchestrating systems and facilitating the incorporation of tools into LLMs. The paper explores SpeCrawler's methodology, supported by empirical evidence and case studies, demonstrating its efficacy through LLM capabilities.
Abstract:Planning is a fundamental task in artificial intelligence that involves finding a sequence of actions that achieve a specified goal in a given environment. Large language models (LLMs) are increasingly used for applications that require planning capabilities, such as web or embodied agents. In line with recent studies, we demonstrate through experimentation that LLMs lack necessary skills required for planning. Based on these observations, we advocate for the potential of a hybrid approach that combines LLMs with classical planning methodology. Then, we introduce SimPlan, a novel hybrid-method, and evaluate its performance in a new challenging setup. Our extensive experiments across various planning domains demonstrate that SimPlan significantly outperforms existing LLM-based planners.
Abstract:Deep neural networks are considered to be state of the art models in many offline machine learning tasks. However, their performance and generalization abilities in online learning tasks are much less understood. Therefore, we focus on online learning and tackle the challenging problem where the underlying process is stationary and ergodic and thus removing the i.i.d. assumption and allowing observations to depend on each other arbitrarily. We prove the generalization abilities of Lipschitz regularized deep neural networks and show that by using those networks, a convergence to the best possible prediction strategy is guaranteed.
Abstract:Deep learning models are considered to be state-of-the-art in many offline machine learning tasks. However, many of the techniques developed are not suitable for online learning tasks. The problem of using deep learning models with sequential data becomes even harder when several loss functions need to be considered simultaneously, as in many real-world applications. In this paper, we, therefore, propose a novel online deep learning training procedure which can be used regardless of the neural network's architecture, aiming to deal with the multiple objectives case. We demonstrate and show the effectiveness of our algorithm on the Neyman-Pearson classification problem on several benchmark datasets.
Abstract:We consider the problem of uncertainty estimation in the context of (non-Bayesian) deep neural classification. In this context, all known methods are based on extracting uncertainty signals from a trained network optimized to solve the classification problem at hand. We demonstrate that such techniques tend to introduce biased estimates for instances whose predictions are supposed to be highly confident. We argue that this deficiency is an artifact of the dynamics of training with SGD-like optimizers, and it has some properties similar to overfitting. Based on this observation, we develop an uncertainty estimation algorithm that selectively estimates the uncertainty of highly confident points, using earlier snapshots of the trained model, before their estimates are jittered (and way before they are ready for actual classification). We present extensive experiments indicating that the proposed algorithm provides uncertainty estimates that are consistently better than all known methods.
Abstract:Online portfolio selection research has so far focused mainly on minimizing regret defined in terms of wealth growth. Practical financial decision making, however, is deeply concerned with both wealth and risk. We consider online learning of portfolios of stocks whose prices are governed by arbitrary (unknown) stationary and ergodic processes, where the goal is to maximize wealth while keeping the conditional value at risk (CVaR) below a desired threshold. We characterize the asymptomatically optimal risk-adjusted performance and present an investment strategy whose portfolios are guaranteed to achieve the asymptotic optimal solution while fulfilling the desired risk constraint. We also numerically demonstrate and validate the viability of our method on standard datasets.
Abstract:Online-learning research has mainly been focusing on minimizing one objective function. In many real-world applications, however, several objective functions have to be considered simultaneously. Recently, an algorithm for dealing with several objective functions in the i.i.d. case has been presented. In this paper, we extend the multi-objective framework to the case of stationary and ergodic processes, thus allowing dependencies among observations. We first identify an asymptomatic lower bound for any prediction strategy and then present an algorithm whose predictions achieve the optimal solution while fulfilling any continuous and convex constraining criterion.
Abstract:We present a novel online ensemble learning strategy for portfolio selection. The new strategy controls and exploits any set of commission-oblivious portfolio selection algorithms. The strategy handles transaction costs using a novel commission avoidance mechanism. We prove a logarithmic regret bound for our strategy with respect to optimal mixtures of the base algorithms. Numerical examples validate the viability of our method and show significant improvement over the state-of-the-art.
Abstract:We consider online learning of ensembles of portfolio selection algorithms and aim to regularize risk by encouraging diversification with respect to a predefined risk-driven grouping of stocks. Our procedure uses online convex optimization to control capital allocation to underlying investment algorithms while encouraging non-sparsity over the given grouping. We prove a logarithmic regret for this procedure with respect to the best-in-hindsight ensemble. We applied the procedure with known mean-reversion portfolio selection algorithms using the standard GICS industry sector grouping. Empirical Experimental results showed an impressive percentage increase of risk-adjusted return (Sharpe ratio).