Abstract:6D Object pose estimation is a fundamental component in robotics enabling efficient interaction with the environment. It is particularly challenging in bin-picking applications, where objects may be textureless and in difficult poses, and occlusion between objects of the same type may cause confusion even in well-trained models. We propose a novel method of hard example synthesis that is model-agnostic, using existing simulators and the modeling of pose error in both the camera-to-object viewsphere and occlusion space. Through evaluation of the model performance with respect to the distribution of object poses and occlusions, we discover regions of high error and generate realistic training samples to specifically target these regions. With our training approach, we demonstrate an improvement in correct detection rate of up to 20% across several ROBI-dataset objects using state-of-the-art pose estimation models.
Abstract:6D Object pose estimation is a fundamental component in robotics enabling efficient interaction with the environment. It is particularly challenging in bin-picking applications, where many objects are low-feature and reflective, and self-occlusion between objects of the same type is common. We propose a novel multi-view approach leveraging known camera transformations from an eye-in-hand setup to combine heatmap and keypoint estimates into a probability density map over 3D space. The result is a robust approach that is scalable in the number of views. It relies on a confidence score composed of keypoint probabilities and point-cloud alignment error, which allows reliable rejection of false positives. We demonstrate an average pose estimation error of approximately 0.5mm and 2 degrees across a variety of difficult low-feature and reflective objects in the ROBI dataset, while also surpassing the state-of-art correct detection rate, measured using the 10% object diameter threshold on ADD error.