Abstract:It is significant to employ multiple autonomous underwater vehicles (AUVs) to execute the underwater target tracking task collaboratively. However, it's pretty challenging to meet various prerequisites utilizing traditional control methods. Therefore, we propose an effective two-stage learning from demonstrations training framework, FISHER, to highlight the adaptability of reinforcement learning (RL) methods in the multi-AUV underwater target tracking task, while addressing its limitations such as extensive requirements for environmental interactions and the challenges in designing reward functions. The first stage utilizes imitation learning (IL) to realize policy improvement and generate offline datasets. To be specific, we introduce multi-agent discriminator-actor-critic based on improvements of the generative adversarial IL algorithm and multi-agent IL optimization objective derived from the Nash equilibrium condition. Then in the second stage, we develop multi-agent independent generalized decision transformer, which analyzes the latent representation to match the future states of high-quality samples rather than reward function, attaining further enhanced policies capable of handling various scenarios. Besides, we propose a simulation to simulation demonstration generation procedure to facilitate the generation of expert demonstrations in underwater environments, which capitalizes on traditional control methods and can easily accomplish the domain transfer to obtain demonstrations. Extensive simulation experiments from multiple scenarios showcase that FISHER possesses strong stability, multi-task performance and capability of generalization.
Abstract:Leveraging large language models (LLMs) for designing reward functions demonstrates significant potential. However, achieving effective design and improvement of reward functions in reinforcement learning (RL) tasks with complex custom environments and multiple requirements presents considerable challenges. In this paper, we enable LLMs to be effective white-box searchers, highlighting their advanced semantic understanding capabilities. Specifically, we generate reward components for each explicit user requirement and employ the reward critic to identify the correct code form. Then, LLMs assign weights to the reward components to balance their values and iteratively search and optimize these weights based on the context provided by the training log analyzer, while adaptively determining the search step size. We applied the framework to an underwater information collection RL task without direct human feedback or reward examples (zero-shot). The reward critic successfully correct the reward code with only one feedback for each requirement, effectively preventing irreparable errors that can occur when reward function feedback is provided in aggregate. The effective initialization of weights enables the acquisition of different reward functions within the Pareto solution set without weight search. Even in the case where a weight is 100 times off, fewer than four iterations are needed to obtain solutions that meet user requirements. The framework also works well with most prompts utilizing GPT-3.5 Turbo, since it does not require advanced numerical understanding or calculation.
Abstract:Autonomous underwater vehicles (AUVs) are valuable for ocean exploration due to their flexibility and ability to carry communication and detection units. Nevertheless, AUVs alone often face challenges in harsh and extreme sea conditions. This study introduces a unmanned surface vehicle (USV)-AUV collaboration framework, which includes high-precision multi-AUV positioning using USV path planning via Fisher information matrix optimization and reinforcement learning for multi-AUV cooperative tasks. Applied to a multi-AUV underwater data collection task scenario, extensive simulations validate the framework's feasibility and superior performance, highlighting exceptional coordination and robustness under extreme sea conditions. The simulation code will be made available as open-source to foster future research in this area.