modl.ai
Abstract:Artificial intelligence (AI) has enabled agents to master complex video games, from first-person shooters like Counter-Strike to real-time strategy games such as StarCraft II and racing games like Gran Turismo. While these achievements are notable, applying these AI methods in commercial video game production remains challenging due to computational constraints. In commercial scenarios, the majority of computational resources are allocated to 3D rendering, leaving limited capacity for AI methods, which often demand high computational power, particularly those relying on pixel-based sensors. Moreover, the gaming industry prioritizes creating human-like behavior in AI agents to enhance player experience, unlike academic models that focus on maximizing game performance. This paper introduces a novel methodology for training neural networks via imitation learning to play a complex, commercial-standard, VALORANT-like 2v2 tactical shooter game, requiring only modest CPU hardware during inference. Our approach leverages an innovative, pixel-free perception architecture using a small set of ray-cast sensors, which capture essential spatial information efficiently. These sensors allow AI to perform competently without the computational overhead of traditional methods. Models are trained to mimic human behavior using supervised learning on human trajectory data, resulting in realistic and engaging AI agents. Human evaluation tests confirm that our AI agents provide human-like gameplay experiences while operating efficiently under computational constraints. This offers a significant advancement in AI model development for tactical shooter games and possibly other genres.
Abstract:Game environments offer a unique opportunity for training virtual agents due to their interactive nature, which provides diverse play traces and affect labels. Despite their potential, no reinforcement learning framework incorporates human affect models as part of their observation space or reward mechanism. To address this, we present the \emph{Affectively Framework}, a set of Open-AI Gym environments that integrate affect as part of the observation space. This paper introduces the framework and its three game environments and provides baseline experiments to validate its effectiveness and potential.
Abstract:Evolutionary search via the quality-diversity (QD) paradigm can discover highly performing solutions in different behavioural niches, showing considerable potential in complex real-world scenarios such as evolutionary robotics. Yet most QD methods only tackle static tasks that are fixed over time, which is rarely the case in the real world. Unlike noisy environments, where the fitness of an individual changes slightly at every evaluation, dynamic environments simulate tasks where external factors at unknown and irregular intervals alter the performance of the individual with a severity that is unknown a priori. Literature on optimisation in dynamic environments is extensive, yet such environments have not been explored in the context of QD search. This paper introduces a novel and generalisable Dynamic QD methodology that aims to keep the archive of past solutions updated in the case of environment changes. Secondly, we present a novel characterisation of dynamic environments that can be easily applied to well-known benchmarks, with minor interventions to move them from a static task to a dynamic one. Our Dynamic QD intervention is applied on MAP-Elites and CMA-ME, two powerful QD algorithms, and we test the dynamic variants on different dynamic tasks.
Abstract:The recent advances in language-based generative models have paved the way for the orchestration of multiple generators of different artefact types (text, image, audio, etc.) into one system. Presently, many open-source pre-trained models combine text with other modalities, thus enabling shared vector embeddings to be compared across different generators. Within this context we propose a novel approach to handle multimodal creative tasks using Quality Diversity evolution. Our contribution is a variation of the MAP-Elites algorithm, MAP-Elites with Transverse Assessment (MEliTA), which is tailored for multimodal creative tasks and leverages deep learned models that assess coherence across modalities. MEliTA decouples the artefacts' modalities and promotes cross-pollination between elites. As a test bed for this algorithm, we generate text descriptions and cover images for a hypothetical video game and assign each artefact a unique modality-specific behavioural characteristic. Results indicate that MEliTA can improve text-to-image mappings within the solution space, compared to a baseline MAP-Elites algorithm that strictly treats each image-text pair as one solution. Our approach represents a significant step forward in multimodal bottom-up orchestration and lays the groundwork for more complex systems coordinating multimodal creative agents in the future.
Abstract:Recent years have seen an explosive increase in research on large language models (LLMs), and accompanying public engagement on the topic. While starting as a niche area within natural language processing, LLMs have shown remarkable potential across a broad range of applications and domains, including games. This paper surveys the current state of the art across the various applications of LLMs in and for games, and identifies the different roles LLMs can take within a game. Importantly, we discuss underexplored areas and promising directions for future uses of LLMs in games and we reconcile the potential and limitations of LLMs within the games domain. As the first comprehensive survey and roadmap at the intersection of LLMs and games, we are hopeful that this paper will serve as the basis for groundbreaking research and innovation in this exciting new field.
Abstract:Domain randomization is an effective computer vision technique for improving transferability of vision models across visually distinct domains exhibiting similar content. Existing approaches, however, rely extensively on tweaking complex and specialized simulation engines that are difficult to construct, subsequently affecting their feasibility and scalability. This paper introduces BehAVE, a video understanding framework that uniquely leverages the plethora of existing commercial video games for domain randomization, without requiring access to their simulation engines. Under BehAVE (1) the inherent rich visual diversity of video games acts as the source of randomization and (2) player behavior -- represented semantically via textual descriptions of actions -- guides the *alignment* of videos with similar content. We test BehAVE on 25 games of the first-person shooter (FPS) genre across various video and text foundation models and we report its robustness for domain randomization. BehAVE successfully aligns player behavioral patterns and is able to zero-shot transfer them to multiple unseen FPS games when trained on just one FPS game. In a more challenging setting, BehAVE manages to improve the zero-shot transferability of foundation models to unseen FPS games (up to 22%) even when trained on a game of a different genre (Minecraft). Code and dataset can be found at https://github.com/nrasajski/BehAVE.
Abstract:This paper surveys the current state of the art in affective computing principles, methods and tools as applied to games. We review this emerging field, namely affective game computing, through the lens of the four core phases of the affective loop: game affect elicitation, game affect sensing, game affect detection and game affect adaptation. In addition, we provide a taxonomy of terms, methods and approaches used across the four phases of the affective game loop and situate the field within this taxonomy. We continue with a comprehensive review of available affect data collection methods with regards to gaming interfaces, sensors, annotation protocols, and available corpora. The paper concludes with a discussion on the current limitations of affective game computing and our vision for the most promising future research directions in the field.
Abstract:We explore AI-powered upscaling as a design assistance tool in the context of creating 2D game levels. Deep neural networks are used to upscale artificially downscaled patches of levels from the puzzle platformer game Lode Runner. The trained networks are incorporated into a web-based editor, where the user can create and edit levels at three different levels of resolution: 4x4, 8x8, and 16x16. An edit at any resolution instantly transfers to the other resolutions. As upscaling requires inventing features that might not be present at lower resolutions, we train neural networks to reproduce these features. We introduce a neural network architecture that is capable of not only learning upscaling but also giving higher priority to less frequent tiles. To investigate the potential of this tool and guide further development, we conduct a qualitative study with 3 designers to understand how they use it. Designers enjoyed co-designing with the tool, liked its underlying concept, and provided feedback for further improvement.
Abstract:On-screen game footage contains rich contextual information that players process when playing and experiencing a game. Learning pixel representations of games can benefit artificial intelligence across several downstream tasks including game-playing agents, procedural content generation, and player modelling. The generalizability of these methods, however, remains a challenge, as learned representations should ideally be shared across games with similar game mechanics. This could allow, for instance, game-playing agents trained on one game to perform well in similar games with no re-training. This paper explores how generalizable pre-trained computer vision encoders can be for such tasks, by decomposing the latent space into content embeddings and style embeddings. The goal is to minimize the domain gap between games of the same genre when it comes to game content critical for downstream tasks, and ignore differences in graphical style. We employ a pre-trained Vision Transformer encoder and a decomposition technique based on game genres to obtain separate content and style embeddings. Our findings show that the decomposed embeddings achieve style invariance across multiple games while still maintaining strong content extraction capabilities. We argue that the proposed decomposition of content and style offers better generalization capacities across game environments independently of the downstream task.
Abstract:How can we reliably transfer affect models trained in controlled laboratory conditions (in-vitro) to uncontrolled real-world settings (in-vivo)? The information gap between in-vitro and in-vivo applications defines a core challenge of affective computing. This gap is caused by limitations related to affect sensing including intrusiveness, hardware malfunctions and availability of sensors. As a response to these limitations, we introduce the concept of privileged information for operating affect models in real-world scenarios (in the wild). Privileged information enables affect models to be trained across multiple modalities available in a lab, and ignore, without significant performance drops, those modalities that are not available when they operate in the wild. Our approach is tested in two multimodal affect databases one of which is designed for testing models of affect in the wild. By training our affect models using all modalities and then using solely raw footage frames for testing the models, we reach the performance of models that fuse all available modalities for both training and testing. The results are robust across both classification and regression affect modeling tasks which are dominant paradigms in affective computing. Our findings make a decisive step towards realizing affect interaction in the wild.