Abstract:Semi-Supervised Learning (SSL) can leverage abundant unlabeled data to boost model performance. However, the class-imbalanced data distribution in real-world scenarios poses great challenges to SSL, resulting in performance degradation. Existing class-imbalanced semi-supervised learning (CISSL) methods mainly focus on rebalancing datasets but ignore the potential of using hard examples to enhance performance, making it difficult to fully harness the power of unlabeled data even with sophisticated algorithms. To address this issue, we propose a method that enhances the performance of Imbalanced Semi-Supervised Learning by Mining Hard Examples (SeMi). This method distinguishes the entropy differences among logits of hard and easy examples, thereby identifying hard examples and increasing the utility of unlabeled data, better addressing the imbalance problem in CISSL. In addition, we maintain a class-balanced memory bank with confidence decay for storing high-confidence embeddings to enhance the pseudo-labels' reliability. Although our method is simple, it is effective and seamlessly integrates with existing approaches. We perform comprehensive experiments on standard CISSL benchmarks and experimentally demonstrate that our proposed SeMi outperforms existing state-of-the-art methods on multiple benchmarks, especially in reversed scenarios, where our best result shows approximately a 54.8\% improvement over the baseline methods.
Abstract:Video Panoptic Segmentation (VPS) requires generating consistent panoptic segmentation and tracking identities to all pixels across video frames. Existing methods are mainly based on the trained instance embedding to maintain consistent panoptic segmentation. However, they inevitably struggle to cope with the challenges of small objects, similar appearance but inconsistent identities, occlusion, and strong instance contour deformations. To address these problems, we present HybridTracker, a lightweight and joint tracking model attempting to eliminate the limitations of the single tracker. HybridTracker performs pixel tracker and instance tracker in parallel to obtain the association matrices, which are fused into a matching matrix. In the instance tracker, we design a differentiable matching layer, ensuring the stability of inter-frame matching. In the pixel tracker, we compute the dice coefficient of the same instance of different frames given the estimated optical flow, forming the Intersection Over Union (IoU) matrix. We additionally propose mutual check and temporal consistency constraints during inference to settle the occlusion and contour deformation challenges. Extensive experiments demonstrate that HybridTracker outperforms state-of-the-art methods on Cityscapes-VPS and VIPER datasets.