Abstract:In this study, we investigate the effectiveness of synthetic data in enhancing hand-object interaction detection within the egocentric vision domain. We introduce a simulator able to generate synthetic images of hand-object interactions automatically labeled with hand-object contact states, bounding boxes, and pixel-wise segmentation masks. Through comprehensive experiments and comparative analyses on three egocentric datasets, VISOR, EgoHOS, and ENIGMA-51, we demonstrate that the use of synthetic data and domain adaptation techniques allows for comparable performance to conventional supervised methods while requiring annotations on only a fraction of the real data. When tested with in-domain synthetic data generated from 3D models of real target environments and objects, our best models show consistent performance improvements with respect to standard fully supervised approaches based on labeled real data only. Our study also sets a new benchmark of domain adaptation for egocentric hand-object interaction detection (HOI-Synth) and provides baseline results to encourage the community to engage in this challenging task. We release the generated data, code, and the simulator at the following link: https://iplab.dmi.unict.it/HOI-Synth/.
Abstract:We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). More than 800 participants from 13 cities worldwide performed these activities in 131 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,422 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources will be open sourced to fuel new research in the community.
Abstract:ENIGMA-51 is a new egocentric dataset acquired in a real industrial domain by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and electronic instruments (e.g., oscilloscope). The 51 sequences are densely annotated with a rich set of labels that enable the systematic study of human-object interactions in the industrial domain. We provide benchmarks on four tasks related to human-object interactions: 1) untrimmed action detection, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human-object interactions in industrial scenarios. We publicly release the dataset at: https://iplab.dmi.unict.it/ENIGMA-51/.
Abstract:What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.
Abstract:In this paper, we tackle the problem of Egocentric Human-Object Interaction (EHOI) detection in an industrial setting. To overcome the lack of public datasets in this context, we propose a pipeline and a tool for generating synthetic images of EHOIs paired with several annotations and data signals (e.g., depth maps or instance segmentation masks). Using the proposed pipeline, we present EgoISM-HOI a new multimodal dataset composed of synthetic EHOI images in an industrial environment with rich annotations of hands and objects. To demonstrate the utility and effectiveness of synthetic EHOI data produced by the proposed tool, we designed a new method that predicts and combines different multimodal signals to detect EHOIs in RGB images. Our study shows that exploiting synthetic data to pre-train the proposed method significantly improves performance when tested on real-world data. Moreover, the proposed approach outperforms state-of-the-art class-agnostic methods. To support research in this field, we publicly release the datasets, source code, and pre-trained models at https://iplab.dmi.unict.it/egoism-hoi.
Abstract:Anticipation problem has been studied considering different aspects such as predicting humans' locations, predicting hands and objects trajectories, and forecasting actions and human-object interactions. In this paper, we studied the short-term object interaction anticipation problem from the egocentric point of view, proposing a new end-to-end architecture named StillFast. Our approach simultaneously processes a still image and a video detecting and localizing next-active objects, predicting the verb which describes the future interaction and determining when the interaction will start. Experiments on the large-scale egocentric dataset EGO4D show that our method outperformed state-of-the-art approaches on the considered task. Our method is ranked first in the public leaderboard of the EGO4D short term object interaction anticipation challenge 2022. Please see the project web page for code and additional details: https://iplab.dmi.unict.it/stillfast/.
Abstract:Wearable cameras allow to acquire images and videos from the user's perspective. These data can be processed to understand humans behavior. Despite human behavior analysis has been thoroughly investigated in third person vision, it is still understudied in egocentric settings and in particular in industrial scenarios. To encourage research in this field, we present MECCANO, a multimodal dataset of egocentric videos to study humans behavior understanding in industrial-like settings. The multimodality is characterized by the presence of gaze signals, depth maps and RGB videos acquired simultaneously with a custom headset. The dataset has been explicitly labeled for fundamental tasks in the context of human behavior understanding from a first person view, such as recognizing and anticipating human-object interactions. With the MECCANO dataset, we explored five different tasks including 1) Action Recognition, 2) Active Objects Detection and Recognition, 3) Egocentric Human-Objects Interaction Detection, 4) Action Anticipation and 5) Next-Active Objects Detection. We propose a benchmark aimed to study human behavior in the considered industrial-like scenario which demonstrates that the investigated tasks and the considered scenario are challenging for state-of-the-art algorithms. To support research in this field, we publicy release the dataset at https://iplab.dmi.unict.it/MECCANO/.
Abstract:We consider the problem of detecting and recognizing the objects observed by visitors (i.e., attended objects) in cultural sites from egocentric vision. A standard approach to the problem involves detecting all objects and selecting the one which best overlaps with the gaze of the visitor, measured through a gaze tracker. Since labeling large amounts of data to train a standard object detector is expensive in terms of costs and time, we propose a weakly supervised version of the task which leans only on gaze data and a frame-level label indicating the class of the attended object. To study the problem, we present a new dataset composed of egocentric videos and gaze coordinates of subjects visiting a museum. We hence compare three different baselines for weakly supervised attended object detection on the collected data. Results show that the considered approaches achieve satisfactory performance in a weakly supervised manner, which allows for significant time savings with respect to a fully supervised detector based on Faster R-CNN. To encourage research on the topic, we publicly release the code and the dataset at the following url: https://iplab.dmi.unict.it/WS_OBJ_DET/
Abstract:We consider the problem of detecting Egocentric HumanObject Interactions (EHOIs) in industrial contexts. Since collecting and labeling large amounts of real images is challenging, we propose a pipeline and a tool to generate photo-realistic synthetic First Person Vision (FPV) images automatically labeled for EHOI detection in a specific industrial scenario. To tackle the problem of EHOI detection, we propose a method that detects the hands, the objects in the scene, and determines which objects are currently involved in an interaction. We compare the performance of our method with a set of state-of-the-art baselines. Results show that using a synthetic dataset improves the performance of an EHOI detection system, especially when few real data are available. To encourage research on this topic, we publicly release the proposed dataset at the following url: https://iplab.dmi.unict.it/EHOI_SYNTH/.
Abstract:Wearable cameras allow to collect images and videos of humans interacting with the world. While human-object interactions have been thoroughly investigated in third person vision, the problem has been understudied in egocentric settings and in industrial scenarios. To fill this gap, we introduce MECCANO, the first dataset of egocentric videos to study human-object interactions in industrial-like settings. MECCANO has been acquired by 20 participants who were asked to build a motorbike model, for which they had to interact with tiny objects and tools. The dataset has been explicitly labeled for the task of recognizing human-object interactions from an egocentric perspective. Specifically, each interaction has been labeled both temporally (with action segments) and spatially (with active object bounding boxes). With the proposed dataset, we investigate four different tasks including 1) action recognition, 2) active object detection, 3) active object recognition and 4) egocentric human-object interaction detection, which is a revisited version of the standard human-object interaction detection task. Baseline results show that the MECCANO dataset is a challenging benchmark to study egocentric human-object interactions in industrial-like scenarios. We publicy release the dataset at https://iplab.dmi.unict.it/MECCANO.