Abstract:Randomized experiments are the preferred approach for evaluating the effects of interventions, but they are costly and often yield estimates with substantial uncertainty. On the other hand, in silico experiments leveraging foundation models offer a cost-effective alternative that can potentially attain higher statistical precision. However, the benefits of in silico experiments come with a significant risk: statistical inferences are not valid if the models fail to accurately predict experimental responses to interventions. In this paper, we propose a novel approach that integrates the predictions from multiple foundation models with experimental data while preserving valid statistical inference. Our estimator is consistent and asymptotically normal, with asymptotic variance no larger than the standard estimator based on experimental data alone. Importantly, these statistical properties hold even when model predictions are arbitrarily biased. Empirical results across several randomized experiments show that our estimator offers substantial precision gains, equivalent to a reduction of up to 20% in the sample size needed to match the same precision as the standard estimator based on experimental data alone.
Abstract:In safety-critical applications, machine learning models should generalize well under worst-case distribution shifts, that is, have a small robust risk. Invariance-based algorithms can provably take advantage of structural assumptions on the shifts when the training distributions are heterogeneous enough to identify the robust risk. However, in practice, such identifiability conditions are rarely satisfied -- a scenario so far underexplored in the theoretical literature. In this paper, we aim to fill the gap and propose to study the more general setting when the robust risk is only partially identifiable. In particular, we introduce the worst-case robust risk as a new measure of robustness that is always well-defined regardless of identifiability. Its minimum corresponds to an algorithm-independent (population) minimax quantity that measures the best achievable robustness under partial identifiability. While these concepts can be defined more broadly, in this paper we introduce and derive them explicitly for a linear model for concreteness of the presentation. First, we show that existing robustness methods are provably suboptimal in the partially identifiable case. We then evaluate these methods and the minimizer of the (empirical) worst-case robust risk on real-world gene expression data and find a similar trend: the test error of existing robustness methods grows increasingly suboptimal as the fraction of data from unseen environments increases, whereas accounting for partial identifiability allows for better generalization.
Abstract:The risk of language models reproducing copyrighted material from their training data has led to the development of various protective measures. Among these, inference-time strategies that impose constraints via post-processing have shown promise in addressing the complexities of copyright regulation. However, they often incur prohibitive computational costs or suffer from performance trade-offs. To overcome these limitations, we introduce Copyright-Protecting Model Fusion (CP-Fuse), a novel approach that combines models trained on disjoint sets of copyrighted material during inference. In particular, CP-Fuse adaptively aggregates the model outputs to minimize the reproduction of copyrighted content, adhering to a crucial balancing property that prevents the regurgitation of memorized data. Through extensive experiments, we show that CP-Fuse significantly reduces the reproduction of protected material without compromising the quality of text and code generation. Moreover, its post-hoc nature allows seamless integration with other protective measures, further enhancing copyright safeguards. Lastly, we show that CP-Fuse is robust against common techniques for extracting training data.
Abstract:Accurately describing the distribution of CO$_2$ in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench dataset, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO$_2$. More specifically, we center CO$_2$ input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill (90-day $R^2 > 0.99$), with physically plausible emulation even for forward runs of multiple years. This work paves the way forward towards high resolution forward and inverse modeling of inert trace gases with neural networks.
Abstract:The risk of language models unintentionally reproducing copyrighted material from their training data has led to the development of various protective measures. In this paper, we propose model fusion as an effective solution to safeguard against copyright infringement. In particular, we introduce Copyright-Protecting Fusion (CP-Fuse), an algorithm that adaptively combines language models to minimize the reproduction of protected materials. CP-Fuse is inspired by the recently proposed Near-Access Free (NAF) framework and additionally incorporates a desirable balancing property that we demonstrate prevents the reproduction of memorized training data. Our results show that CP-Fuse significantly reduces the memorization of copyrighted content while maintaining high-quality text and code generation. Furthermore, we demonstrate how CP-Fuse can be integrated with other techniques for enhanced protection.
Abstract:We study the problem of estimating the means of well-separated mixtures when an adversary may add arbitrary outliers. While strong guarantees are available when the outlier fraction is significantly smaller than the minimum mixing weight, much less is known when outliers may crowd out low-weight clusters - a setting we refer to as list-decodable mixture learning (LD-ML). In this case, adversarial outliers can simulate additional spurious mixture components. Hence, if all means of the mixture must be recovered up to a small error in the output list, the list size needs to be larger than the number of (true) components. We propose an algorithm that obtains order-optimal error guarantees for each mixture mean with a minimal list-size overhead, significantly improving upon list-decodable mean estimation, the only existing method that is applicable for LD-ML. Although improvements are observed even when the mixture is non-separated, our algorithm achieves particularly strong guarantees when the mixture is separated: it can leverage the mixture structure to partially cluster the samples before carefully iterating a base learner for list-decodable mean estimation at different scales.
Abstract:Randomized trials are considered the gold standard for making informed decisions in medicine, yet they often lack generalizability to the patient populations in clinical practice. Observational studies, on the other hand, cover a broader patient population but are prone to various biases. Thus, before using an observational study for decision-making, it is crucial to benchmark its treatment effect estimates against those derived from a randomized trial. We propose a novel strategy to benchmark observational studies beyond the average treatment effect. First, we design a statistical test for the null hypothesis that the treatment effects estimated from the two studies, conditioned on a set of relevant features, differ up to some tolerance. We then estimate an asymptotically valid lower bound on the maximum bias strength for any subgroup in the observational study. Finally, we validate our benchmarking strategy in a real-world setting and show that it leads to conclusions that align with established medical knowledge.
Abstract:We present a novel approach for differentially private data synthesis of protected tabular datasets, a relevant task in highly sensitive domains such as healthcare and government. Current state-of-the-art methods predominantly use marginal-based approaches, where a dataset is generated from private estimates of the marginals. In this paper, we introduce PrivPGD, a new generation method for marginal-based private data synthesis, leveraging tools from optimal transport and particle gradient descent. Our algorithm outperforms existing methods on a large range of datasets while being highly scalable and offering the flexibility to incorporate additional domain-specific constraints.
Abstract:In the era of fast-paced precision medicine, observational studies play a major role in properly evaluating new treatments in clinical practice. Yet, unobserved confounding can significantly compromise causal conclusions drawn from non-randomized data. We propose a novel strategy that leverages randomized trials to quantify unobserved confounding. First, we design a statistical test to detect unobserved confounding with strength above a given threshold. Then, we use the test to estimate an asymptotically valid lower bound on the unobserved confounding strength. We evaluate the power and validity of our statistical test on several synthetic and semi-synthetic datasets. Further, we show how our lower bound can correctly identify the absence and presence of unobserved confounding in a real-world setting.
Abstract:Prior works have shown that semi-supervised learning algorithms can leverage unlabeled data to improve over the labeled sample complexity of supervised learning (SL) algorithms. However, existing theoretical analyses focus on regimes where the unlabeled data is sufficient to learn a good decision boundary using unsupervised learning (UL) alone. This begs the question: Can SSL algorithms simultaneously improve upon both UL and SL? To this end, we derive a tight lower bound for 2-Gaussian mixture models that explicitly depends on the labeled and the unlabeled dataset size as well as the signal-to-noise ratio of the mixture distribution. Surprisingly, our result implies that no SSL algorithm can improve upon the minimax-optimal statistical error rates of SL or UL algorithms for these distributions. Nevertheless, we show empirically on real-world data that SSL algorithms can still outperform UL and SL methods. Therefore, our work suggests that, while proving performance gains for SSL algorithms is possible, it requires careful tracking of constants.