University of Colorado
Abstract:Many of the world's languages have insufficient data to train high-performing general neural machine translation (NMT) models, let alone domain-specific models, and often the only available parallel data are small amounts of religious texts. Hence, domain adaptation (DA) is a crucial issue faced by contemporary NMT and has, so far, been underexplored for low-resource languages. In this paper, we evaluate a set of methods from both low-resource NMT and DA in a realistic setting, in which we aim to translate between a high-resource and a low-resource language with access to only: a) parallel Bible data, b) a bilingual dictionary, and c) a monolingual target-domain corpus in the high-resource language. Our results show that the effectiveness of the tested methods varies, with the simplest one, DALI, being most effective. We follow up with a small human evaluation of DALI, which shows that there is still a need for more careful investigation of how to accomplish DA for low-resource NMT.
Abstract:Canonical morphological segmentation is the process of analyzing words into the standard (aka underlying) forms of their constituent morphemes. This is a core task in language documentation, and NLP systems have the potential to dramatically speed up this process. But in typical language documentation settings, training data for canonical morpheme segmentation is scarce, making it difficult to train high quality models. However, translation data is often much more abundant, and, in this work, we present a method that attempts to leverage this data in the canonical segmentation task. We propose a character-level sequence-to-sequence model that incorporates representations of translations obtained from pretrained high-resource monolingual language models as an additional signal. Our model outperforms the baseline in a super-low resource setting but yields mixed results on training splits with more data. While further work is needed to make translations useful in higher-resource settings, our model shows promise in severely resource-constrained settings.
Abstract:A key aspect of language documentation is the creation of annotated text in a format such as interlinear glossed text (IGT), which captures fine-grained morphosyntactic analyses in a morpheme-by-morpheme format. Prior work has explored methods to automatically generate IGT in order to reduce the time cost of language analysis. However, many languages (particularly those requiring preservation) lack sufficient IGT data to train effective models, and crosslingual transfer has been proposed as a method to overcome this limitation. We compile the largest existing corpus of IGT data from a variety of sources, covering over 450k examples across 1.8k languages, to enable research on crosslingual transfer and IGT generation. Then, we pretrain a large multilingual model on a portion of this corpus, and further finetune it to specific languages. Our model is competitive with state-of-the-art methods for segmented data and large monolingual datasets. Meanwhile, our model outperforms SOTA models on unsegmented text and small corpora by up to 6.6% morpheme accuracy, demonstrating the effectiveness of crosslingual transfer for low-resource languages.