Abstract:Robot trajectories used for learning end-to-end robot policies typically contain end-effector and gripper position, workspace images, and language. Policies learned from such trajectories are unsuitable for delicate grasping, which require tightly coupled and precise gripper force and gripper position. We collect and make publically available 130 trajectories with force feedback of successful grasps on 30 unique objects. Our current-based method for sensing force, albeit noisy, is gripper-agnostic and requires no additional hardware. We train and evaluate two diffusion policies: one with (forceful) the collected force feedback and one without (position-only). We find that forceful policies are superior to position-only policies for delicate grasping and are able to generalize to unseen delicate objects, while reducing grasp policy latency by near 4x, relative to LLM-based methods. With our promising results on limited data, we hope to signal to others to consider investing in collecting force and other such tactile information in new datasets, enabling more robust, contact-rich manipulation in future robot foundation models. Our data, code, models, and videos are viewable at https://justaddforce.github.io/.
Abstract:Large language models (LLMs) can provide rich physical descriptions of most worldly objects, allowing robots to achieve more informed and capable grasping. We leverage LLMs' common sense physical reasoning and code-writing abilities to infer an object's physical characteristics--mass $m$, friction coefficient $\mu$, and spring constant $k$--from a semantic description, and then translate those characteristics into an executable adaptive grasp policy. Using a current-controllable, two-finger gripper with a built-in depth camera, we demonstrate that LLM-generated, physically-grounded grasp policies outperform traditional grasp policies on a custom benchmark of 12 delicate and deformable items including food, produce, toys, and other everyday items, spanning two orders of magnitude in mass and required pick-up force. We also demonstrate how compliance feedback from DeliGrasp policies can aid in downstream tasks such as measuring produce ripeness. Our code and videos are available at: https://deligrasp.github.io