Abstract:A key component of dyadic spoken interactions is the contextually relevant non-verbal gestures, such as head movements that reflect a listener's response to the interlocutor's speech. Although significant progress has been made in the context of generating co-speech gestures, generating listener's response has remained a challenge. We introduce the task of generating continuous head motion response of a listener in response to the speaker's speech in real time. To this end, we propose a graph-based end-to-end crossmodal model that takes interlocutor's speech audio as input and directly generates head pose angles (roll, pitch, yaw) of the listener in real time. Different from previous work, our approach is completely data-driven, does not require manual annotations or oversimplify head motion to merely nods and shakes. Extensive evaluation on the dyadic interaction sessions on the IEMOCAP dataset shows that our model produces a low overall error (4.5 degrees) and a high frame rate, thereby indicating its deployability in real-world human-robot interaction systems. Our code is available at - https://github.com/bigzen/Active-Listener
Abstract:We introduce HARPER, a novel dataset for 3D body pose estimation and forecast in dyadic interactions between users and Spot, the quadruped robot manufactured by Boston Dynamics. The key-novelty is the focus on the robot's perspective, i.e., on the data captured by the robot's sensors. These make 3D body pose analysis challenging because being close to the ground captures humans only partially. The scenario underlying HARPER includes 15 actions, of which 10 involve physical contact between the robot and users. The Corpus contains not only the recordings of the built-in stereo cameras of Spot, but also those of a 6-camera OptiTrack system (all recordings are synchronized). This leads to ground-truth skeletal representations with a precision lower than a millimeter. In addition, the Corpus includes reproducible benchmarks on 3D Human Pose Estimation, Human Pose Forecasting, and Collision Prediction, all based on publicly available baseline approaches. This enables future HARPER users to rigorously compare their results with those we provide in this work.