Abstract:Generative Flow Networks (GFlowNets; GFNs) are a family of reward/energy-based generative methods for combinatorial objects, capable of generating diverse and high-utility samples. However, biasing GFNs towards producing high-utility samples is non-trivial. In this work, we leverage connections between GFNs and reinforcement learning (RL) and propose to combine the GFN policy with an action-value estimate, $Q$, to create greedier sampling policies which can be controlled by a mixing parameter. We show that several variants of the proposed method, QGFN, are able to improve on the number of high-reward samples generated in a variety of tasks without sacrificing diversity.
Abstract:Deep learning is emerging as an effective tool in drug discovery, with potential applications in both predictive and generative models. Generative Flow Networks (GFlowNets/GFNs) are a recently introduced method recognized for the ability to generate diverse candidates, in particular in small molecule generation tasks. In this work, we introduce double GFlowNets (DGFNs). Drawing inspiration from reinforcement learning and Double Deep Q-Learning, we introduce a target network used to sample trajectories, while updating the main network with these sampled trajectories. Empirical results confirm that DGFNs effectively enhance exploration in sparse reward domains and high-dimensional state spaces, both challenging aspects of de-novo design in drug discovery.
Abstract:Reinforcement Learning (RL) algorithms aim to learn an optimal policy by iteratively sampling actions to learn how to maximize the total expected return, $R(x)$. GFlowNets are a special class of algorithms designed to generate diverse candidates, $x$, from a discrete set, by learning a policy that approximates the proportional sampling of $R(x)$. GFlowNets exhibit improved mode discovery compared to conventional RL algorithms, which is very useful for applications such as drug discovery and combinatorial search. However, since GFlowNets are a relatively recent class of algorithms, many techniques which are useful in RL have not yet been associated with them. In this paper, we study the utilization of a replay buffer for GFlowNets. We explore empirically various replay buffer sampling techniques and assess the impact on the speed of mode discovery and the quality of the modes discovered. Our experimental results in the Hypergrid toy domain and a molecule synthesis environment demonstrate significant improvements in mode discovery when training with a replay buffer, compared to training only with trajectories generated on-policy.
Abstract:Building Agent Assistants that can help improve customer service support requires inputs from industry users and their customers, as well as knowledge about state-of-the-art Natural Language Processing (NLP) technology. We combine expertise from academia and industry to bridge the gap and build task/domain-specific Neural Agent Assistants (NAA) with three high-level components for: (1) Intent Identification, (2) Context Retrieval, and (3) Response Generation. In this paper, we outline the pipeline of the NAA's core system and also present three case studies in which three industry partners successfully adapt the framework to find solutions to their unique challenges. Our findings suggest that a collaborative process is instrumental in spurring the development of emerging NLP models for Conversational AI tasks in industry. The full reference implementation code and results are available at \url{https://github.com/VectorInstitute/NAA}
Abstract:Mechanical ventilation is a key form of life support for patients with pulmonary impairment. Healthcare workers are required to continuously adjust ventilator settings for each patient, a challenging and time consuming task. Hence, it would be beneficial to develop an automated decision support tool to optimize ventilation treatment. We present DeepVent, a Conservative Q-Learning (CQL) based offline Deep Reinforcement Learning (DRL) agent that learns to predict the optimal ventilator parameters for a patient to promote 90 day survival. We design a clinically relevant intermediate reward that encourages continuous improvement of the patient vitals as well as addresses the challenge of sparse reward in RL. We find that DeepVent recommends ventilation parameters within safe ranges, as outlined in recent clinical trials. The CQL algorithm offers additional safety by mitigating the overestimation of the value estimates of out-of-distribution states/actions. We evaluate our agent using Fitted Q Evaluation (FQE) and demonstrate that it outperforms physicians from the MIMIC-III dataset.
Abstract:Reasoning about the future -- understanding how decisions in the present time affect outcomes in the future -- is one of the central challenges for reinforcement learning (RL), especially in highly-stochastic or partially observable environments. While predicting the future directly is hard, in this work we introduce a method that allows an agent to "look into the future" without explicitly predicting it. Namely, we propose to allow an agent, during its training on past experience, to observe what \emph{actually} happened in the future at that time, while enforcing an information bottleneck to avoid the agent overly relying on this privileged information. This gives our agent the opportunity to utilize rich and useful information about the future trajectory dynamics in addition to the present. Our method, Policy Gradients Incorporating the Future (PGIF), is easy to implement and versatile, being applicable to virtually any policy gradient algorithm. We apply our proposed method to a number of off-the-shelf RL algorithms and show that PGIF is able to achieve higher reward faster in a variety of online and offline RL domains, as well as sparse-reward and partially observable environments.