Abstract:In this paper, we investigate whether current state-of-the-art large language models (LLMs) are effective as AI tutors and whether they demonstrate pedagogical abilities necessary for good AI tutoring in educational dialogues. Previous efforts towards evaluation have been limited to subjective protocols and benchmarks. To bridge this gap, we propose a unified evaluation taxonomy with eight pedagogical dimensions based on key learning sciences principles, which is designed to assess the pedagogical value of LLM-powered AI tutor responses grounded in student mistakes or confusion in the mathematical domain. We release MRBench -- a new evaluation benchmark containing 192 conversations and 1,596 responses from seven state-of-the-art LLM-based and human tutors, providing gold annotations for eight pedagogical dimensions. We assess reliability of the popular Prometheus2 LLM as an evaluator and analyze each tutor's pedagogical abilities, highlighting which LLMs are good tutors and which ones are more suitable as question-answering systems. We believe that the presented taxonomy, benchmark, and human-annotated labels will streamline the evaluation process and help track the progress in AI tutors' development.
Abstract:Cryptic crosswords are puzzles that rely on general knowledge and the solver's ability to manipulate language on different levels, dealing with various types of wordplay. Previous research suggests that solving such puzzles is challenging even for modern NLP models, including Large Language Models (LLMs). However, there is little to no research on the reasons for their poor performance on this task. In this paper, we establish the benchmark results for three popular LLMs: Gemma2, LLaMA3 and ChatGPT, showing that their performance on this task is still significantly below that of humans. We also investigate why these models struggle to achieve superior performance. We release our code and introduced datasets at https://github.com/bodasadallah/decrypting-crosswords.
Abstract:The role of large language models (LLMs) in education is an increasing area of interest today, considering the new opportunities they offer for teaching, learning, and assessment. This cutting-edge tutorial provides an overview of the educational applications of NLP and the impact that the recent advances in LLMs have had on this field. We will discuss the key challenges and opportunities presented by LLMs, grounding them in the context of four major educational applications: reading, writing, and speaking skills, and intelligent tutoring systems (ITS). This COLING 2025 tutorial is designed for researchers and practitioners interested in the educational applications of NLP and the role LLMs have to play in this area. It is the first of its kind to address this timely topic.
Abstract:Large language models (LLMs) have gained increased popularity due to their remarkable success across various tasks, which has led to the active development of a large set of diverse LLMs. However, individual LLMs have limitations when applied to complex tasks because of such factors as training biases, model sizes, and the datasets used. A promising approach is to efficiently harness the diverse capabilities of LLMs to overcome these individual limitations. Towards this goal, we introduce a novel LLM selection algorithm called SelectLLM. This algorithm directs input queries to the most suitable subset of LLMs from a large pool, ensuring they collectively provide the correct response efficiently. SelectLLM uses a multi-label classifier, utilizing the classifier's predictions and confidence scores to design optimal policies for selecting an optimal, query-aware, and lightweight subset of LLMs. Our findings show that the proposed model outperforms individual LLMs and achieves competitive performance compared to similarly sized, computationally expensive top-performing LLM subsets. Specifically, with a similarly sized top-performing LLM subset, we achieve a significant reduction in latency on two standard reasoning benchmarks: 13% lower latency for GSM8K and 70% lower latency for MMLU. Additionally, we conduct comprehensive analyses and ablation studies, which validate the robustness of the proposed model.
Abstract:With the rapid development of LLMs, it is natural to ask how to harness their capabilities efficiently. In this paper, we explore whether it is feasible to direct each input query to a single most suitable LLM. To this end, we propose LLM routing for challenging reasoning tasks. Our extensive experiments suggest that such routing shows promise but is not feasible in all scenarios, so more robust approaches should be investigated to fill this gap.
Abstract:In this paper, we present our submission to the SemEval-2024 Task 8 "Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection", focusing on the detection of machine-generated texts (MGTs) in English. Specifically, our approach relies on combining embeddings from the RoBERTa-base with diversity features and uses a resampled training set. We score 12th from 124 in the ranking for Subtask A (monolingual track), and our results show that our approach is generalizable across unseen models and domains, achieving an accuracy of 0.91.
Abstract:In this paper, we present our submission to the SemEval-2023 Task~3 "The Competition of Multimodal Emotion Cause Analysis in Conversations", focusing on extracting emotion-cause pairs from dialogs. Specifically, our approach relies on combining fine-tuned GPT-3.5 for emotion classification and a BiLSTM-based neural network to detect causes. We score 2nd in the ranking for Subtask 1, demonstrating the effectiveness of our approach through one of the highest weighted-average proportional F1 scores recorded at 0.264.
Abstract:This paper investigates the question of what makes math word problems (MWPs) in English challenging for large language models (LLMs). We conduct an in-depth analysis of the key linguistic and mathematical characteristics of MWPs. In addition, we train feature-based classifiers to better understand the impact of each feature on the overall difficulty of MWPs for prominent LLMs and investigate whether this helps predict how well LLMs fare against specific categories of MWPs.
Abstract:Text simplification lacks a universal standard of quality, and annotated reference simplifications are scarce and costly. We propose to alleviate such limitations by introducing REFeREE, a reference-free model-based metric with a 3-stage curriculum. REFeREE leverages an arbitrarily scalable pretraining stage and can be applied to any quality standard as long as a small number of human annotations are available. Our experiments show that our metric outperforms existing reference-based metrics in predicting overall ratings and reaches competitive and consistent performance in predicting specific ratings while requiring no reference simplifications at inference time.
Abstract:Cryptic crosswords are puzzles that rely not only on general knowledge but also on the solver's ability to manipulate language on different levels and deal with various types of wordplay. Previous research suggests that solving such puzzles is a challenge even for modern NLP models. However, the abilities of large language models (LLMs) have not yet been tested on this task. In this paper, we establish the benchmark results for three popular LLMs -- LLaMA2, Mistral, and ChatGPT -- showing that their performance on this task is still far from that of humans.