Abstract:Self-adaptive large language models (LLMs) aim to solve the challenges posed by traditional fine-tuning methods, which are often computationally intensive and static in their ability to handle diverse tasks. We introduce $\text{Transformer}^2$, a novel self-adaptation framework that adapts LLMs for unseen tasks in real-time by selectively adjusting only the singular components of their weight matrices. During inference, $\text{Transformer}^2$ employs a two-pass mechanism: first, a dispatch system identifies the task properties, and then task-specific "expert" vectors, trained using reinforcement learning, are dynamically mixed to obtain targeted behavior for the incoming prompt. Our method outperforms ubiquitous approaches such as LoRA, with fewer parameters and greater efficiency. $\text{Transformer}^2$ demonstrates versatility across different LLM architectures and modalities, including vision-language tasks. $\text{Transformer}^2$ represents a significant leap forward, offering a scalable, efficient solution for enhancing the adaptability and task-specific performance of LLMs, paving the way for truly dynamic, self-organizing AI systems.
Abstract:The forward-backward representation (FB) is a recently proposed framework (Touati et al., 2023; Touati & Ollivier, 2021) to train behavior foundation models (BFMs) that aim at providing zero-shot efficient policies for any new task specified in a given reinforcement learning (RL) environment, without training for each new task. Here we address two core limitations of FB model training. First, FB, like all successor-feature-based methods, relies on a linear encoding of tasks: at test time, each new reward function is linearly projected onto a fixed set of pre-trained features. This limits expressivity as well as precision of the task representation. We break the linearity limitation by introducing auto-regressive features for FB, which let finegrained task features depend on coarser-grained task information. This can represent arbitrary nonlinear task encodings, thus significantly increasing expressivity of the FB framework. Second, it is well-known that training RL agents from offline datasets often requires specific techniques.We show that FB works well together with such offline RL techniques, by adapting techniques from (Nair et al.,2020b; Cetin et al., 2024) for FB. This is necessary to get non-flatlining performance in some datasets, such as DMC Humanoid. As a result, we produce efficient FB BFMs for a number of new environments. Notably, in the D4RL locomotion benchmark, the generic FB agent matches the performance of standard single-task offline agents (IQL, XQL). In many setups, the offline techniques are needed to get any decent performance at all. The auto-regressive features have a positive but moderate impact, concentrated on tasks requiring spatial precision and task generalization beyond the behaviors represented in the trainset.
Abstract:Prior methods propose to offset the escalating costs of modern foundation models by dropping specific parts of their contexts with hand-designed rules, while attempting to preserve their original performance. We overcome this trade-off with Neural Attention Memory Models (NAMMs), introducing a learned network for memory management that improves both the performance and efficiency of transformers. We evolve NAMMs atop pre-trained transformers to provide different latent contexts focusing on the most relevant information for individual layers and attention heads.NAMMs are universally applicable to any model using self-attention as they condition exclusively on the values in the produced attention matrices. Learning NAMMs on a small set of problems, we achieve substantial performance improvements across multiple long-context benchmarks while cutting the model's input contexts up to a fraction of the original sizes. We show the generality of our conditioning enables zero-shot transfer of NAMMs trained only on language to entirely new transformer architectures even across input modalities, with their benefits carrying over to vision and reinforcement learning.
Abstract:Offline reinforcement learning algorithms have proven effective on datasets highly connected to the target downstream task. Yet, leveraging a novel testbed (MOOD) in which trajectories come from heterogeneous sources, we show that existing methods struggle with diverse data: their performance considerably deteriorates as data collected for related but different tasks is simply added to the offline buffer. In light of this finding, we conduct a large empirical study where we formulate and test several hypotheses to explain this failure. Surprisingly, we find that scale, more than algorithmic considerations, is the key factor influencing performance. We show that simple methods like AWAC and IQL with increased network size overcome the paradoxical failure modes from the inclusion of additional data in MOOD, and notably outperform prior state-of-the-art algorithms on the canonical D4RL benchmark.
Abstract:We introduce a new framework that performs decision-making in reinforcement learning (RL) as an iterative reasoning process. We model agent behavior as the steady-state distribution of a parameterized reasoning Markov chain (RMC), optimized with a new tractable estimate of the policy gradient. We perform action selection by simulating the RMC for enough reasoning steps to approach its steady-state distribution. We show our framework has several useful properties that are inherently missing from traditional RL. For instance, it allows agent behavior to approximate any continuous distribution over actions by parameterizing the RMC with a simple Gaussian transition function. Moreover, the number of reasoning steps to reach convergence can scale adaptively with the difficulty of each action selection decision and can be accelerated by re-using past solutions. Our resulting algorithm achieves state-of-the-art performance in popular Mujoco and DeepMind Control benchmarks, both for proprioceptive and pixel-based tasks.
Abstract:We propose a new class of deep reinforcement learning (RL) algorithms that model latent representations in hyperbolic space. Sequential decision-making requires reasoning about the possible future consequences of current behavior. Consequently, capturing the relationship between key evolving features for a given task is conducive to recovering effective policies. To this end, hyperbolic geometry provides deep RL models with a natural basis to precisely encode this inherently hierarchical information. However, applying existing methodologies from the hyperbolic deep learning literature leads to fatal optimization instabilities due to the non-stationarity and variance characterizing RL gradient estimators. Hence, we design a new general method that counteracts such optimization challenges and enables stable end-to-end learning with deep hyperbolic representations. We empirically validate our framework by applying it to popular on-policy and off-policy RL algorithms on the Procgen and Atari 100K benchmarks, attaining near universal performance and generalization benefits. Given its natural fit, we hope future RL research will consider hyperbolic representations as a standard tool.
Abstract:Off-policy reinforcement learning (RL) from pixel observations is notoriously unstable. As a result, many successful algorithms must combine different domain-specific practices and auxiliary losses to learn meaningful behaviors in complex environments. In this work, we provide novel analysis demonstrating that these instabilities arise from performing temporal-difference learning with a convolutional encoder and low-magnitude rewards. We show that this new visual deadly triad causes unstable training and premature convergence to degenerate solutions, a phenomenon we name catastrophic self-overfitting. Based on our analysis, we propose A-LIX, a method providing adaptive regularization to the encoder's gradients that explicitly prevents the occurrence of catastrophic self-overfitting using a dual objective. By applying A-LIX, we significantly outperform the prior state-of-the-art on the DeepMind Control and Atari 100k benchmarks without any data augmentation or auxiliary losses.
Abstract:Popular off-policy deep reinforcement learning algorithms compensate for overestimation bias during temporal-difference learning by utilizing pessimistic estimates of the expected target returns. In this work, we propose a novel learnable penalty to enact such pessimism, based on a new way to quantify the critic's epistemic uncertainty. Furthermore, we propose to learn the penalty alongside the critic with dual TD-learning, a strategy to estimate and minimize the bias magnitude in the target returns. Our method enables us to accurately counteract overestimation bias throughout training without incurring the downsides of overly pessimistic targets. Empirically, by integrating our method and other orthogonal improvements with popular off-policy algorithms, we achieve state-of-the-art results in continuous control tasks from both proprioceptive and pixel observations.
Abstract:The performance of reinforcement learning depends upon designing an appropriate action space, where the effect of each action is measurable, yet, granular enough to permit flexible behavior. So far, this process involved non-trivial user choices in terms of the available actions and their execution frequency. We propose a novel framework for reinforcement learning that effectively lifts such constraints. Within our framework, agents learn effective behavior over a routine space: a new, higher-level action space, where each routine represents a set of 'equivalent' sequences of granular actions with arbitrary length. Our routine space is learned end-to-end to facilitate the accomplishment of underlying off-policy reinforcement learning objectives. We apply our framework to two state-of-the-art off-policy algorithms and show that the resulting agents obtain relevant performance improvements while requiring fewer interactions with the environment per episode, improving computational efficiency.
Abstract:Incremental learning aims to enable machine learning models to continuously acquire new knowledge given new classes, while maintaining the knowledge already learned for old classes. Saving a subset of training samples of previously seen classes in the memory and replaying them during new training phases is proven to be an efficient and effective way to fulfil this aim. It is evident that the larger number of exemplars the model inherits the better performance it can achieve. However, finding a trade-off between the model performance and the number of samples to save for each class is still an open problem for replay-based incremental learning and is increasingly desirable for real-life applications. In this paper, we approach this open problem by tapping into a two-step compression approach. The first step is a lossy compression, we propose to encode input images and save their discrete latent representations in the form of codes that are learned using a hierarchical Vector Quantised Variational Autoencoder (VQ-VAE). In the second step, we further compress codes losslessly by learning a hierarchical latent variable model with bits-back asymmetric numeral systems (BB-ANS). To compensate for the information lost in the first step compression, we introduce an Information Back (IB) mechanism that utilizes real exemplars for a contrastive learning loss to regularize the training of a classifier. By maintaining all seen exemplars' representations in the format of `codes', Discrete Representation Replay (DRR) outperforms the state-of-art method on CIFAR-100 by a margin of 4% accuracy with a much less memory cost required for saving samples. Incorporated with IB and saving a small set of old raw exemplars as well, the accuracy of DRR can be further improved by 2% accuracy.