Abstract:In the past decade, convolutional neural networks (CNNs) have shown prominence for semantic segmentation. Although CNN models have very impressive performance, the ability to capture global representation is still insufficient, which results in suboptimal results. Recently, Transformer achieved huge success in NLP tasks, demonstrating its advantages in modeling long-range dependency. Recently, Transformer has also attracted tremendous attention from computer vision researchers who reformulate the image processing tasks as a sequence-to-sequence prediction but resulted in deteriorating local feature details. In this work, we propose a lightweight real-time semantic segmentation network called LETNet. LETNet combines a U-shaped CNN with Transformer effectively in a capsule embedding style to compensate for respective deficiencies. Meanwhile, the elaborately designed Lightweight Dilated Bottleneck (LDB) module and Feature Enhancement (FE) module cultivate a positive impact on training from scratch simultaneously. Extensive experiments performed on challenging datasets demonstrate that LETNet achieves superior performances in accuracy and efficiency balance. Specifically, It only contains 0.95M parameters and 13.6G FLOPs but yields 72.8\% mIoU at 120 FPS on the Cityscapes test set and 70.5\% mIoU at 250 FPS on the CamVid test dataset using a single RTX 3090 GPU. The source code will be available at https://github.com/IVIPLab/LETNet.
Abstract:In recent years, how to strike a good trade-off between accuracy and inference speed has become the core issue for real-time semantic segmentation applications, which plays a vital role in real-world scenarios such as autonomous driving systems and drones. In this study, we devise a novel lightweight network using a multi-scale context fusion (MSCFNet) scheme, which explores an asymmetric encoder-decoder architecture to dispose this problem. More specifically, the encoder adopts some developed efficient asymmetric residual (EAR) modules, which are composed of factorization depth-wise convolution and dilation convolution. Meanwhile, instead of complicated computation, simple deconvolution is applied in the decoder to further reduce the amount of parameters while still maintaining high segmentation accuracy. Also, MSCFNet has branches with efficient attention modules from different stages of the network to well capture multi-scale contextual information. Then we combine them before the final classification to enhance the expression of the features and improve the segmentation efficiency. Comprehensive experiments on challenging datasets have demonstrated that the proposed MSCFNet, which contains only 1.15M parameters, achieves 71.9\% Mean IoU on the Cityscapes testing dataset and can run at over 50 FPS on a single Titan XP GPU configuration.
Abstract:In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. In this paper, we intend to minimize the energy cost of an HVAC system in a multi-zone commercial building under dynamic pricing with the consideration of random zone occupancy, thermal comfort, and indoor air quality comfort. Due to the existence of unknown thermal dynamics models, parameter uncertainties (e.g., outdoor temperature, electricity price, and number of occupants), spatially and temporally coupled constraints associated with indoor temperature and CO2 concentration, a large discrete solution space, and a non-convex and non-separable objective function, it is very challenging to achieve the above aim. To this end, the above energy cost minimization problem is reformulated as a Markov game. Then, an HVAC control algorithm is proposed to solve the Markov game based on multi-agent deep reinforcement learning with attention mechanism. The proposed algorithm does not require any prior knowledge of uncertain parameters and can operate without knowing building thermal dynamics models. Simulation results based on real-world traces show the effectiveness, robustness and scalability of the proposed algorithm.