Abstract:The rapid advancement of natural language processing (NLP) technologies, such as instruction-tuned large language models (LLMs), urges the development of modern evaluation protocols with human and machine feedback. We introduce Evalica, an open-source toolkit that facilitates the creation of reliable and reproducible model leaderboards. This paper presents its design, evaluates its performance, and demonstrates its usability through its Web interface, command-line interface, and Python API.
Abstract:In this paper, we present Toloka Visual Question Answering, a new crowdsourced dataset allowing comparing performance of machine learning systems against human level of expertise in the grounding visual question answering task. In this task, given an image and a textual question, one has to draw the bounding box around the object correctly responding to that question. Every image-question pair contains the response, with only one correct response per image. Our dataset contains 45,199 pairs of images and questions in English, provided with ground truth bounding boxes, split into train and two test subsets. Besides describing the dataset and releasing it under a CC BY license, we conducted a series of experiments on open source zero-shot baseline models and organized a multi-phase competition at WSDM Cup that attracted 48 participants worldwide. However, by the time of paper submission, no machine learning model outperformed the non-expert crowdsourcing baseline according to the intersection over union evaluation score.
Abstract:Recent progress in generative models, especially in text-guided diffusion models, has enabled the production of aesthetically-pleasing imagery resembling the works of professional human artists. However, one has to carefully compose the textual description, called the prompt, and augment it with a set of clarifying keywords. Since aesthetics are challenging to evaluate computationally, human feedback is needed to determine the optimal prompt formulation and keyword combination. In this paper, we present a human-in-the-loop approach to learning the most useful combination of prompt keywords using a genetic algorithm. We also show how such an approach can improve the aesthetic appeal of images depicting the same descriptions.
Abstract:Crowdsourcing allows running simple human intelligence tasks on a large crowd of workers, enabling solving problems for which it is difficult to formulate an algorithm or train a machine learning model in reasonable time. One of such problems is data clustering by an under-specified criterion that is simple for humans, but difficult for machines. In this demonstration paper, we build a crowdsourced system for image clustering and release its code under a free license at https://github.com/Toloka/crowdclustering. Our experiments on two different image datasets, dresses from Zalando's FEIDEGGER and shoes from the Toloka Shoes Dataset, confirm that one can yield meaningful clusters with no machine learning algorithms purely with crowdsourcing.
Abstract:Domain-specific data is the crux of the successful transfer of machine learning systems from benchmarks to real life. Crowdsourcing has become one of the standard tools for cheap and time-efficient data collection for simple problems such as image classification: thanks in large part to advances in research on aggregation methods. However, the applicability of crowdsourcing to more complex tasks (e.g., speech recognition) remains limited due to the lack of principled aggregation methods for these modalities. The main obstacle towards designing advanced aggregation methods is the absence of training data, and in this work, we focus on bridging this gap in speech recognition. For this, we collect and release CrowdSpeech -- the first publicly available large-scale dataset of crowdsourced audio transcriptions. Evaluation of existing aggregation methods on our data shows room for improvement, suggesting that our work may entail the design of better algorithms. At a higher level, we also contribute to the more general challenge of collecting high-quality datasets using crowdsourcing: we develop a principled pipeline for constructing datasets of crowdsourced audio transcriptions in any novel domain. We show its applicability on an under-resourced language by constructing VoxDIY -- a counterpart of CrowdSpeech for the Russian language. We also release the code that allows a full replication of our data collection pipeline and share various insights on best practices of data collection via crowdsourcing.
Abstract:Disambiguation of word senses in context is easy for humans, but is a major challenge for automatic approaches. Sophisticated supervised and knowledge-based models were developed to solve this task. However, (i) the inherent Zipfian distribution of supervised training instances for a given word and/or (ii) the quality of linguistic knowledge representations motivate the development of completely unsupervised and knowledge-free approaches to word sense disambiguation (WSD). They are particularly useful for under-resourced languages which do not have any resources for building either supervised and/or knowledge-based models. In this paper, we present a method that takes as input a standard pre-trained word embedding model and induces a fully-fledged word sense inventory, which can be used for disambiguation in context. We use this method to induce a collection of sense inventories for 158 languages on the basis of the original pre-trained fastText word embeddings by Grave et al. (2018), enabling WSD in these languages. Models and system are available online.
Abstract:We present our system for semantic frame induction that showed the best performance in Subtask B.1 and finished as the runner-up in Subtask A of the SemEval 2019 Task 2 on unsupervised semantic frame induction (QasemiZadeh et al., 2019). Our approach separates this task into two independent steps: verb clustering using word and their context embeddings and role labeling by combining these embeddings with syntactical features. A simple combination of these steps shows very competitive results and can be extended to process other datasets and languages.
Abstract:In this paper, we show how unsupervised sense representations can be used to improve hypernymy extraction. We present a method for extracting disambiguated hypernymy relationships that propagates hypernyms to sets of synonyms (synsets), constructs embeddings for these sets, and establishes sense-aware relationships between matching synsets. Evaluation on two gold standard datasets for English and Russian shows that the method successfully recognizes hypernymy relationships that cannot be found with standard Hearst patterns and Wiktionary datasets for the respective languages.
Abstract:We present Watset, a new meta-algorithm for fuzzy graph clustering. This algorithm creates an intermediate representation of the input graph that naturally reflects the "ambiguity" of its nodes. It uses hard clustering to discover clusters in this "disambiguated" intermediate graph. After outlining the approach and analyzing its computational complexity, we demonstrate that Watset shows excellent results in two applications: unsupervised synset induction from a synonymy graph and unsupervised semantic frame induction from dependency triples. The presented algorithm is generic and can be also applied to other networks of linguistic data.
Abstract:The paper describes the results of the first shared task on word sense induction (WSI) for the Russian language. While similar shared tasks were conducted in the past for some Romance and Germanic languages, we explore the performance of sense induction and disambiguation methods for a Slavic language that shares many features with other Slavic languages, such as rich morphology and virtually free word order. The participants were asked to group contexts of a given word in accordance with its senses that were not provided beforehand. For instance, given a word "bank" and a set of contexts for this word, e.g. "bank is a financial institution that accepts deposits" and "river bank is a slope beside a body of water", a participant was asked to cluster such contexts in the unknown in advance number of clusters corresponding to, in this case, the "company" and the "area" senses of the word "bank". For the purpose of this evaluation campaign, we developed three new evaluation datasets based on sense inventories that have different sense granularity. The contexts in these datasets were sampled from texts of Wikipedia, the academic corpus of Russian, and an explanatory dictionary of Russian. Overall, 18 teams participated in the competition submitting 383 models. Multiple teams managed to substantially outperform competitive state-of-the-art baselines from the previous years based on sense embeddings.